Vertex AI 预测笔记本教程

本文档包含可用的 Vertex AI 预测笔记本教程列表。这些端到端教程可帮助您上手使用 Vertex AI 预测,并为您提供有关如何实现特定项目的建议。

您可以在多种环境中托管笔记本。您可以:

  • 使用 Colaboratory (Colab)Vertex AI Workbench 等服务在云中运行这些脚本。
  • 从 GitHub 下载这些脚本并在本地机器上运行它们。
  • 从 GitHub 下载这些脚本,并在本地网络的 Jupyter 或 JupyterLab 服务器上运行它们。

在 Colab 中运行笔记本是一种快速开始上手的方法。

如需在 Colab 中打开笔记本教程,请点击笔记本列表中的 Colab 链接。Colab 会创建一个具有所有所需依赖项的虚拟机实例,启动 Colab 环境并加载笔记本。

您还可以使用用户管理的笔记本运行笔记本。 使用 Vertex AI Workbench 创建用户管理的笔记本实例时,您可以完全控制托管虚拟机。您可以指定托管虚拟机的配置和环境。

如需在 Vertex AI Workbench 实例中打开笔记本教程,请执行以下操作:

  1. 点击笔记本列表中的 Vertex AI Workbench 链接。该链接会打开 Vertex AI Workbench 控制台。
  2. 部署到笔记本屏幕中,输入新 Vertex AI Workbench 实例的名称,然后点击创建
  3. 该实例启动后,系统会显示准备好打开笔记本对话框,点击打开
  4. Confirm deployment to notebook server(确认部署到笔记本服务器)页面上,选择确认
  5. 在运行笔记本之前,请选择 Kernel > Restart Kernel and Clear all Outputs(内核 > 重启内核并清除所有输出)。

笔记本列表

  • 选择一项服务
  • AutoML
  • BigQuery
  • BigQuery ML
  • 自定义训练
  • Image
  • Ray on Vertex AI
  • 表格
  • 文本
  • 向量搜索
  • Vertex AI Experiments
  • Vertex AI Feature Store
  • Vertex AI 模型评估
  • Vertex AI Model Monitoring
  • Vertex AI Model Registry
  • Vertex AI Pipelines
  • Vertex AI Prediction
  • Vertex AI TensorBoard
  • Vertex AI Vizier
  • Vertex AI Workbench
  • Vertex Explainable AI
  • Vertex ML Metadata
  • 视频

服务 说明 打开方式
自定义训练
Vertex AI Prediction
使用 FastAPI 和 Vertex AI 自定义容器服务部署鸢尾花检测模型
了解如何在 Vertex AI 上创建、部署和提供自定义分类模型。 详细了解自定义训练。 详细了解 Vertex AI Prediction
  • 训练一个使用花朵测量值作为输入来预测鸢尾花类型的模型。
  • 保存模型及其序列化预处理器。
  • 构建一个 FastAPI 服务器来处理预测和健康检查。
  • 使用模型工件构建自定义容器。
  • 将自定义容器上传并部署到 Vertex AI 端点。
Colab
Colab Enterprise
GitHub
Vertex AI Workbench
自定义训练
Vertex AI Prediction
自定义训练和在线预测
了解如何使用 Vertex AI Training 通过 Python 脚本在 Docker 容器中创建自定义训练的模型,并了解如何使用 Vertex AI Prediction 通过发送数据对已部署的模型执行预测。详细了解自定义训练。 详细了解 Vertex AI Prediction
  • 创建一个 Vertex AI 自定义作业来训练 TensorFlow 模型。
  • 将经过训练的模型制品上传到 Model 资源。
  • 创建服务 Endpoint 资源。
  • Model 资源部署到服务 Endpoint 资源。
  • 进行预测。
  • 取消部署 Model 资源。
Colab
Colab Enterprise
GitHub
Vertex AI Workbench
Vertex Explainable AI
Vertex AI Prediction
适用于在线预测的提供解释的自定义训练图片分类模型
了解如何使用 Vertex AI Training 和 Vertex Explainable AI 创建提供解释的自定义图片分类模型。详细了解 Vertex Explainable AI。 详细了解 Vertex AI Prediction
  • 创建一个 Vertex AI 自定义作业来训练 TensorFlow 模型。
  • 查看经过训练的模型的评估。
  • 就何时部署模型设置解释参数。
  • 将经过训练的模型制品和解释作为模型资源上传。
  • 创建服务端点资源。
  • 将模型资源部署到服务端点资源。
  • 进行提供解释的预测。
  • 取消部署模型资源。
Colab
Colab Enterprise
GitHub
Vertex AI Workbench
Vertex Explainable AI
Vertex AI Prediction
用于在线预测的自定义训练表格的回归模型(包含说明)
了解如何使用 Vertex AI Training 和 Vertex Explainable AI 创建自定义表格回归模型,并提供解释。详细了解 Vertex Explainable AI。 详细了解 Vertex AI Prediction
  • 创建一个 Vertex AI 自定义作业来训练 TensorFlow 模型。
  • 查看经过训练的模型的评估。
  • 就何时部署模型设置解释参数。
  • 将经过训练的模型制品和解释作为模型资源上传。
  • 创建服务端点资源。
  • 将模型资源部署到服务端点资源。
  • 进行提供解释的预测。
  • 取消部署模型资源。
Colab
Colab Enterprise
GitHub
Vertex AI Workbench
Vertex Explainable AI
Vertex AI Prediction
用于使用 get_metadata 的可解释的在线预测的自定义训练表格回归模型
了解如何使用 Vertex AI SDK 通过 Python 脚本在 Google 预构建的 Docker 容器中创建自定义模型。详细了解 Vertex Explainable AI。 详细了解 Vertex AI Prediction
  • 创建一个 Vertex AI 自定义作业来训练 TensorFlow 模型。
  • 训练 TensorFlow 模型。
  • 检索并加载模型工件。
  • 查看经过训练的模型的评估。
  • 设置解释参数。
  • 将模型作为 Vertex AI 模型资源上传。
  • 将模型资源部署到服务端点资源。
  • 进行提供解释的预测。
  • 取消部署模型资源。
Colab
Colab Enterprise
GitHub
Vertex AI Workbench
Vertex Explainable AI
Vertex AI Prediction
使用 Vertex Explainable AI 提供图片分类解释
了解如何在预训练的图片分类模型上配置基于特征的解释,并进行提供解释的在线预测和批量预测。 详细了解 Vertex Explainable AI。 详细了解 Vertex AI Prediction
  • 从 TensorFlow Hub 下载预训练模型
  • 上传模型以进行部署
  • 部署模型以进行在线预测
  • 进行提供解释的在线预测
  • 进行提供解释的批量预测
Colab
Colab Enterprise
GitHub
Vertex AI Workbench
Vertex AI Prediction
NVIDIA Triton 服务器使用入门
了解如何将使用 Vertex AI 模型资源运行 Nvidia Triton 服务器的容器部署到 Vertex AI 端点以进行在线预测。 详细了解 Vertex AI Prediction
  • 从 TensorFlow Hub 下载模型工件。
  • 为模型创建 Triton 服务配置文件。
  • 使用 Triton 服务映像构建自定义容器,以进行模型部署。
  • 将模型作为 Vertex AI 模型资源上传。
  • 将 Vertex AI 模型资源部署到 Vertex AI 端点资源。
  • 发出预测请求。
  • 取消部署模型资源并删除端点。
Colab
Colab Enterprise
GitHub
Vertex AI Workbench
Vertex AI Prediction
在 Vertex AI 上使用预构建容器训练和部署 PyTorch 模型
了解如何使用预构建的容器构建、训练和部署 PyTorch 图片分类模型,以进行自定义训练和预测。
  • 将训练应用打包到 Python 源分发包中
  • 在预构建容器中配置并运行训练作业
  • 将模型工件打包到一个模型归档文件中
  • 上传模型以进行部署
  • 使用预构建容器部署模型以进行预测
  • 进行在线预测
Colab
Colab Enterprise
GitHub
Vertex AI Workbench