Obtenir des prédictions en ligne à partir de modèles AutoML

Pour certains types de données, vous pouvez demander des prédictions en ligne (en temps réel) à partir de modèles AutoML après leur création et leur déploiement sur un point de terminaison. Une prédiction en ligne est une requête synchrone plutôt qu'une prédiction par lot, qui est une requête asynchrone.

Utilisez les prédictions en ligne lorsque vous effectuez des requêtes en réponse à une entrée d'une application ou dans d'autres situations nécessitant une inférence rapide.

Pour effectuer une prédiction en ligne, envoyez un ou plusieurs éléments de test à un modèle pour analyse, et ce modèle renvoie des résultats basés sur l'objectif de votre modèle. Pour plus d'informations sur les résultats de prédiction, consultez la page Interpréter les résultats des modèles AutoML.

Prédictions en ligne avec Cloud Console

Utilisez Cloud Console pour demander une prédiction en ligne. Votre modèle doit être déployé sur un point de terminaison.

  1. Dans Cloud Console, dans la section Vertex AI, accédez à la page Modèles.

    Accéder à la page des modèles

  2. Dans la liste des modèles, cliquez sur le nom du modèle à partir duquel demander les prédictions.

  3. Sélectionnez l'onglet Déployer et tester.

  4. Dans la section Tester votre modèle, ajoutez des éléments de test pour demander une prédiction.

    La méthode et l'entrée d'une prédiction en ligne dépendent de l'objectif de votre modèle. Par exemple, pour les modèles AutoML d'objectifs de texte, vous devez saisir du contenu dans un champ de texte, puis cliquer sur Prédire. Les modèles AutoML pour les objectifs d'images nécessitent l'importation d'une image pour demander une prédiction. Pour les modèles tabulaires, les données de prédiction de base sont renseignées automatiquement, ou vous pouvez saisir vos propres données de prédiction, puis cliquer sur Prédiction.

    Pour plus d'informations sur l'importance des caractéristiques locales pour les modèles tabulaires, consultez la section Obtenir des explications.

    Une fois la prédiction terminée, Vertex AI renvoie les résultats dans la console.

Prédictions en ligne avec l'API

Utilisez l'API Vertex AI pour demander une prédiction en ligne. Votre modèle doit être déployé sur un point de terminaison.

Image

Les objectifs de type de données d'image incluent la classification et la détection d'objets.

Prédiction par modèle Edge : lorsque vous utilisez des modèles Edge d'images AutoML pour la prédiction, vous devez convertir tout fichier de prédiction non-JPEG en fichier-JPEG avant d'envoyer la requête de prédiction. Pour obtenir un exemple de fonction de prétraitement Python, consultez le dépôt client Python pour le dépôt de l'API AutoML de Google Cloud.

Classification

gcloud

  1. Créez un fichier nommé request.json avec le contenu suivant :

    {
      "instances": [{
        "content": "CONTENT"
      }],
      "parameters": {
        "confidenceThreshold": THRESHOLD_VALUE,
        "maxPredictions": MAX_PREDICTIONS
      }
    }
    

    Remplacez l'élément suivant :

    • CONTENT : contenu de l'image encodée en base64.
    • THRESHOLD_VALUE (facultatif) : le modèle ne renvoie que les prédictions dont le score de confiance est au moins égal à cette valeur.
    • MAX_PREDICTIONS (facultatif) : le modèle renvoie jusqu'à ce nombre de prédictions en commençant par les prédictions présentant les scores de confiance les plus élevés.
  2. Exécutez la commande suivante :

    gcloud ai endpoints predict ENDPOINT_ID \
      --region=LOCATION \
      --json-request=request.json
    

    Remplacez l'élément suivant :

    • ENDPOINT_ID : ID du point de terminaison.
    • LOCATION: région dans laquelle vous utilisez l'IA Vertex.

API REST et ligne de commande

Avant d'utiliser les données de requête ci-dessous, effectuez les remplacements suivants :

  • LOCATION : région où se trouve le point de terminaison. Exemple : us-central1.
  • PROJECT : ID de votre projet ou numéro de projet.
  • ENDPOINT_ID : ID du point de terminaison.
  • CONTENT : contenu de l'image encodée en base64.
  • THRESHOLD_VALUE (facultatif) : le modèle ne renvoie que les prédictions dont le score de confiance est au moins égal à cette valeur.
  • MAX_PREDICTIONS (facultatif) : le modèle renvoie jusqu'à ce nombre de prédictions en commençant par les prédictions présentant les scores de confiance les plus élevés.

Méthode HTTP et URL :

POST https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/endpoints/ENDPOINT_ID:predict

Corps JSON de la requête :

{
  "instances": [{
    "content": "CONTENT"
  }],
  "parameters": {
    "confidenceThreshold": THRESHOLD_VALUE,
    "maxPredictions": MAX_PREDICTIONS
  }
}

Pour envoyer votre requête, choisissez l'une des options suivantes :

curl

Enregistrez le corps de la requête dans un fichier nommé request.json, puis exécutez la commande suivante :

curl -X POST \
-H "Authorization: Bearer "$(gcloud auth application-default print-access-token) \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/endpoints/ENDPOINT_ID:predict"

PowerShell

Enregistrez le corps de la requête dans un fichier nommé request.json, puis exécutez la commande suivante :

$cred = gcloud auth application-default print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/endpoints/ENDPOINT_ID:predict" | Select-Object -Expand Content

Vous devriez recevoir une réponse JSON de ce type :

{
  "predictions": [
    {
      "confidences": [
        0.92629629373550415
      ],
      "ids": [
        "354376995678715904"
      ],
      "displayNames": [
        "sunflower"
      ]
    }
  ],
  "deployedModelId": "2119225099654529024"
}

Java

Pour savoir comment installer et utiliser la bibliothèque cliente pour Vertex AI, consultez la page Bibliothèques clientes Vertex AI. Pour en savoir plus, consultez la documentation de référence de l'API Vertex AI en langage Java.


import com.google.api.client.util.Base64;
import com.google.cloud.aiplatform.util.ValueConverter;
import com.google.cloud.aiplatform.v1.EndpointName;
import com.google.cloud.aiplatform.v1.PredictResponse;
import com.google.cloud.aiplatform.v1.PredictionServiceClient;
import com.google.cloud.aiplatform.v1.PredictionServiceSettings;
import com.google.cloud.aiplatform.v1.schema.predict.instance.ImageClassificationPredictionInstance;
import com.google.cloud.aiplatform.v1.schema.predict.params.ImageClassificationPredictionParams;
import com.google.cloud.aiplatform.v1.schema.predict.prediction.ClassificationPredictionResult;
import com.google.protobuf.Value;
import java.io.IOException;
import java.nio.charset.StandardCharsets;
import java.nio.file.Files;
import java.nio.file.Paths;
import java.util.ArrayList;
import java.util.List;

public class PredictImageClassificationSample {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String project = "YOUR_PROJECT_ID";
    String fileName = "YOUR_IMAGE_FILE_PATH";
    String endpointId = "YOUR_ENDPOINT_ID";
    predictImageClassification(project, fileName, endpointId);
  }

  static void predictImageClassification(String project, String fileName, String endpointId)
      throws IOException {
    PredictionServiceSettings settings =
        PredictionServiceSettings.newBuilder()
            .setEndpoint("us-central1-aiplatform.googleapis.com:443")
            .build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (PredictionServiceClient predictionServiceClient =
        PredictionServiceClient.create(settings)) {
      String location = "us-central1";
      EndpointName endpointName = EndpointName.of(project, location, endpointId);

      byte[] contents = Base64.encodeBase64(Files.readAllBytes(Paths.get(fileName)));
      String content = new String(contents, StandardCharsets.UTF_8);

      ImageClassificationPredictionInstance predictionInstance =
          ImageClassificationPredictionInstance.newBuilder().setContent(content).build();

      List<Value> instances = new ArrayList<>();
      instances.add(ValueConverter.toValue(predictionInstance));

      ImageClassificationPredictionParams predictionParams =
          ImageClassificationPredictionParams.newBuilder()
              .setConfidenceThreshold((float) 0.5)
              .setMaxPredictions(5)
              .build();

      PredictResponse predictResponse =
          predictionServiceClient.predict(
              endpointName, instances, ValueConverter.toValue(predictionParams));
      System.out.println("Predict Image Classification Response");
      System.out.format("\tDeployed Model Id: %s\n", predictResponse.getDeployedModelId());

      System.out.println("Predictions");
      for (Value prediction : predictResponse.getPredictionsList()) {

        ClassificationPredictionResult.Builder resultBuilder =
            ClassificationPredictionResult.newBuilder();
        // Display names and confidences values correspond to
        // IDs in the ID list.
        ClassificationPredictionResult result =
            (ClassificationPredictionResult) ValueConverter.fromValue(resultBuilder, prediction);
        int counter = 0;
        for (Long id : result.getIdsList()) {
          System.out.printf("Label ID: %d\n", id);
          System.out.printf("Label: %s\n", result.getDisplayNames(counter));
          System.out.printf("Confidence: %.4f\n", result.getConfidences(counter));
          counter++;
        }
      }
    }
  }
}

Node.js

Pour savoir comment installer et utiliser la bibliothèque cliente pour Vertex AI, consultez la page Bibliothèques clientes Vertex AI. Pour en savoir plus, consultez la documentation de référence de l'API Vertex AI en langage Node.js.

/**
 * TODO(developer): Uncomment these variables before running the sample.\
 * (Not necessary if passing values as arguments)
 */

// const filename = "YOUR_PREDICTION_FILE_NAME";
// const endpointId = "YOUR_ENDPOINT_ID";
// const project = 'YOUR_PROJECT_ID';
// const location = 'YOUR_PROJECT_LOCATION';
const aiplatform = require('@google-cloud/aiplatform');
const {instance, params, prediction} =
  aiplatform.protos.google.cloud.aiplatform.v1.schema.predict;

// Imports the Google Cloud Prediction Service Client library
const {PredictionServiceClient} = aiplatform.v1;

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: 'us-central1-aiplatform.googleapis.com',
};

// Instantiates a client
const predictionServiceClient = new PredictionServiceClient(clientOptions);

async function predictImageClassification() {
  // Configure the endpoint resource
  const endpoint = `projects/${project}/locations/${location}/endpoints/${endpointId}`;

  const parametersObj = new params.ImageClassificationPredictionParams({
    confidenceThreshold: 0.5,
    maxPredictions: 5,
  });
  const parameters = parametersObj.toValue();

  const fs = require('fs');
  const image = fs.readFileSync(filename, 'base64');
  const instanceObj = new instance.ImageClassificationPredictionInstance({
    content: image,
  });
  const instanceValue = instanceObj.toValue();

  const instances = [instanceValue];
  const request = {
    endpoint,
    instances,
    parameters,
  };

  // Predict request
  const [response] = await predictionServiceClient.predict(request);

  console.log('Predict image classification response');
  console.log(`\tDeployed model id : ${response.deployedModelId}`);
  const predictions = response.predictions;
  console.log('\tPredictions :');
  for (const predictionValue of predictions) {
    const predictionResultObj =
      prediction.ClassificationPredictionResult.fromValue(predictionValue);
    for (const [i, label] of predictionResultObj.displayNames.entries()) {
      console.log(`\tDisplay name: ${label}`);
      console.log(`\tConfidences: ${predictionResultObj.confidences[i]}`);
      console.log(`\tIDs: ${predictionResultObj.ids[i]}\n\n`);
    }
  }
}
predictImageClassification();

Python

Pour savoir comment installer et utiliser la bibliothèque cliente pour Vertex AI, consultez la page Bibliothèques clientes Vertex AI. Pour en savoir plus, consultez la documentation de référence de l'API Vertex AI en langage Python.

import base64

from google.cloud import aiplatform
from google.cloud.aiplatform.gapic.schema import predict

def predict_image_classification_sample(
    project: str,
    endpoint_id: str,
    filename: str,
    location: str = "us-central1",
    api_endpoint: str = "us-central1-aiplatform.googleapis.com",
):
    # The AI Platform services require regional API endpoints.
    client_options = {"api_endpoint": api_endpoint}
    # Initialize client that will be used to create and send requests.
    # This client only needs to be created once, and can be reused for multiple requests.
    client = aiplatform.gapic.PredictionServiceClient(client_options=client_options)
    with open(filename, "rb") as f:
        file_content = f.read()

    # The format of each instance should conform to the deployed model's prediction input schema.
    encoded_content = base64.b64encode(file_content).decode("utf-8")
    instance = predict.instance.ImageClassificationPredictionInstance(
        content=encoded_content,
    ).to_value()
    instances = [instance]
    # See gs://google-cloud-aiplatform/schema/predict/params/image_classification_1.0.0.yaml for the format of the parameters.
    parameters = predict.params.ImageClassificationPredictionParams(
        confidence_threshold=0.5, max_predictions=5,
    ).to_value()
    endpoint = client.endpoint_path(
        project=project, location=location, endpoint=endpoint_id
    )
    response = client.predict(
        endpoint=endpoint, instances=instances, parameters=parameters
    )
    print("response")
    print(" deployed_model_id:", response.deployed_model_id)
    # See gs://google-cloud-aiplatform/schema/predict/prediction/image_classification_1.0.0.yaml for the format of the predictions.
    predictions = response.predictions
    for prediction in predictions:
        print(" prediction:", dict(prediction))

Détection d'objets

gcloud

  1. Créez un fichier nommé request.json avec le contenu suivant :

    {
      "instances": [{
        "content": "CONTENT"
      }],
      "parameters": {
        "confidenceThreshold": THRESHOLD_VALUE,
        "maxPredictions": MAX_PREDICTIONS
      }
    }
    

    Remplacez l'élément suivant :

    • CONTENT : contenu de l'image encodée en base64.
    • THRESHOLD_VALUE (facultatif) : le modèle ne renvoie que les prédictions dont le score de confiance est au moins égal à cette valeur.
    • MAX_PREDICTIONS (facultatif) : le modèle renvoie jusqu'à ce nombre de prédictions en commençant par les prédictions présentant les scores de confiance les plus élevés.
  2. Exécutez la commande suivante :

    gcloud ai endpoints predict ENDPOINT_ID \
      --region=LOCATION \
      --json-request=request.json
    

    Remplacez l'élément suivant :

    • ENDPOINT_ID : ID du point de terminaison.
    • LOCATION: région dans laquelle vous utilisez l'IA Vertex.

API REST et ligne de commande

Avant d'utiliser les données de requête ci-dessous, effectuez les remplacements suivants :

  • LOCATION : région où se trouve le point de terminaison. Exemple : us-central1.
  • PROJECT : ID de votre projet ou numéro de projet.
  • ENDPOINT_ID : ID du point de terminaison.
  • CONTENT : contenu de l'image encodée en base64.
  • THRESHOLD_VALUE (facultatif) : le modèle ne renvoie que les prédictions dont le score de confiance est au moins égal à cette valeur.
  • MAX_PREDICTIONS (facultatif) : le modèle renvoie jusqu'à ce nombre de prédictions en commençant par les prédictions présentant les scores de confiance les plus élevés.

Méthode HTTP et URL :

POST https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/endpoints/ENDPOINT_ID:predict

Corps JSON de la requête :

{
  "instances": [{
    "content": "CONTENT"
  }],
  "parameters": {
    "confidenceThreshold": THRESHOLD_VALUE,
    "maxPredictions": MAX_PREDICTIONS
  }
}

Pour envoyer votre requête, choisissez l'une des options suivantes :

curl

Enregistrez le corps de la requête dans un fichier nommé request.json, puis exécutez la commande suivante :

curl -X POST \
-H "Authorization: Bearer "$(gcloud auth application-default print-access-token) \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/endpoints/ENDPOINT_ID:predict"

PowerShell

Enregistrez le corps de la requête dans un fichier nommé request.json, puis exécutez la commande suivante :

$cred = gcloud auth application-default print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/endpoints/ENDPOINT_ID:predict" | Select-Object -Expand Content

Vous devriez recevoir une réponse JSON de ce type :

{
  "predictions": [
    {
      "confidences": [
        0.975873291,
        0.972160876,
        0.879488528,
        0.866532683,
        0.686478078
      ],
      "displayNames": [
        "Salad",
        "Salad",
        "Tomato",
        "Tomato",
        "Salad"
      ],
      "ids": [
        "7517774415476555776",
        "7517774415476555776",
        "2906088397049167872",
        "2906088397049167872",
        "7517774415476555776"
      ],
      "bboxes": [
        [
          0.0869686604,
          0.977020741,
          0.395135701,
          1
        ],
        [
          0,
          0.488701463,
          0.00157663226,
          0.512249
        ],
        [
          0.361617863,
          0.509664357,
          0.772928834,
          0.914706349
        ],
        [
          0.310678929,
          0.45781514,
          0.565507233,
          0.711237729
        ],
        [
          0.584359646,
          1,
          0.00116168708,
          0.130817384
        ]
      ]
    }
  ],
  "deployedModelId": "3860570043075002368"
}

Java

Pour savoir comment installer et utiliser la bibliothèque cliente pour Vertex AI, consultez la page Bibliothèques clientes Vertex AI. Pour en savoir plus, consultez la documentation de référence de l'API Vertex AI en langage Java.


import com.google.api.client.util.Base64;
import com.google.cloud.aiplatform.util.ValueConverter;
import com.google.cloud.aiplatform.v1.EndpointName;
import com.google.cloud.aiplatform.v1.PredictResponse;
import com.google.cloud.aiplatform.v1.PredictionServiceClient;
import com.google.cloud.aiplatform.v1.PredictionServiceSettings;
import com.google.cloud.aiplatform.v1.schema.predict.instance.ImageObjectDetectionPredictionInstance;
import com.google.cloud.aiplatform.v1.schema.predict.params.ImageObjectDetectionPredictionParams;
import com.google.cloud.aiplatform.v1.schema.predict.prediction.ImageObjectDetectionPredictionResult;
import com.google.protobuf.Value;
import java.io.IOException;
import java.nio.charset.StandardCharsets;
import java.nio.file.Files;
import java.nio.file.Paths;
import java.util.ArrayList;
import java.util.List;

public class PredictImageObjectDetectionSample {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String project = "YOUR_PROJECT_ID";
    String fileName = "YOUR_IMAGE_FILE_PATH";
    String endpointId = "YOUR_ENDPOINT_ID";
    predictImageObjectDetection(project, fileName, endpointId);
  }

  static void predictImageObjectDetection(String project, String fileName, String endpointId)
      throws IOException {
    PredictionServiceSettings settings =
        PredictionServiceSettings.newBuilder()
            .setEndpoint("us-central1-aiplatform.googleapis.com:443")
            .build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (PredictionServiceClient predictionServiceClient =
        PredictionServiceClient.create(settings)) {
      String location = "us-central1";
      EndpointName endpointName = EndpointName.of(project, location, endpointId);

      byte[] contents = Base64.encodeBase64(Files.readAllBytes(Paths.get(fileName)));
      String content = new String(contents, StandardCharsets.UTF_8);

      ImageObjectDetectionPredictionParams params =
          ImageObjectDetectionPredictionParams.newBuilder()
              .setConfidenceThreshold((float) (0.5))
              .setMaxPredictions(5)
              .build();

      ImageObjectDetectionPredictionInstance instance =
          ImageObjectDetectionPredictionInstance.newBuilder().setContent(content).build();

      List<Value> instances = new ArrayList<>();
      instances.add(ValueConverter.toValue(instance));

      PredictResponse predictResponse =
          predictionServiceClient.predict(endpointName, instances, ValueConverter.toValue(params));
      System.out.println("Predict Image Object Detection Response");
      System.out.format("\tDeployed Model Id: %s\n", predictResponse.getDeployedModelId());

      System.out.println("Predictions");
      for (Value prediction : predictResponse.getPredictionsList()) {

        ImageObjectDetectionPredictionResult.Builder resultBuilder =
            ImageObjectDetectionPredictionResult.newBuilder();

        ImageObjectDetectionPredictionResult result =
            (ImageObjectDetectionPredictionResult)
                ValueConverter.fromValue(resultBuilder, prediction);

        for (int i = 0; i < result.getIdsCount(); i++) {
          System.out.printf("\tDisplay name: %s\n", result.getDisplayNames(i));
          System.out.printf("\tConfidences: %f\n", result.getConfidences(i));
          System.out.printf("\tIDs: %d\n", result.getIds(i));
          System.out.printf("\tBounding boxes: %s\n", result.getBboxes(i));
        }
      }
    }
  }
}

Node.js

Pour savoir comment installer et utiliser la bibliothèque cliente pour Vertex AI, consultez la page Bibliothèques clientes Vertex AI. Pour en savoir plus, consultez la documentation de référence de l'API Vertex AI en langage Node.js.

/**
 * TODO(developer): Uncomment these variables before running the sample.\
 * (Not necessary if passing values as arguments)
 */

// const filename = "YOUR_PREDICTION_FILE_NAME";
// const endpointId = "YOUR_ENDPOINT_ID";
// const project = 'YOUR_PROJECT_ID';
// const location = 'YOUR_PROJECT_LOCATION';
const aiplatform = require('@google-cloud/aiplatform');
const {instance, params, prediction} =
  aiplatform.protos.google.cloud.aiplatform.v1.schema.predict;

// Imports the Google Cloud Prediction Service Client library
const {PredictionServiceClient} = aiplatform.v1;

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: 'us-central1-aiplatform.googleapis.com',
};

// Instantiates a client
const predictionServiceClient = new PredictionServiceClient(clientOptions);

async function predictImageObjectDetection() {
  // Configure the endpoint resource
  const endpoint = `projects/${project}/locations/${location}/endpoints/${endpointId}`;

  const parametersObj = new params.ImageObjectDetectionPredictionParams({
    confidenceThreshold: 0.5,
    maxPredictions: 5,
  });
  const parameters = parametersObj.toValue();

  const fs = require('fs');
  const image = fs.readFileSync(filename, 'base64');
  const instanceObj = new instance.ImageObjectDetectionPredictionInstance({
    content: image,
  });

  const instanceVal = instanceObj.toValue();
  const instances = [instanceVal];
  const request = {
    endpoint,
    instances,
    parameters,
  };

  // Predict request
  const [response] = await predictionServiceClient.predict(request);

  console.log('Predict image object detection response');
  console.log(`\tDeployed model id : ${response.deployedModelId}`);
  const predictions = response.predictions;
  console.log('Predictions :');
  for (const predictionResultVal of predictions) {
    const predictionResultObj =
      prediction.ImageObjectDetectionPredictionResult.fromValue(
        predictionResultVal
      );
    for (const [i, label] of predictionResultObj.displayNames.entries()) {
      console.log(`\tDisplay name: ${label}`);
      console.log(`\tConfidences: ${predictionResultObj.confidences[i]}`);
      console.log(`\tIDs: ${predictionResultObj.ids[i]}`);
      console.log(`\tBounding boxes: ${predictionResultObj.bboxes[i]}\n\n`);
    }
  }
}
predictImageObjectDetection();

Python

Pour savoir comment installer et utiliser la bibliothèque cliente pour Vertex AI, consultez la page Bibliothèques clientes Vertex AI. Pour en savoir plus, consultez la documentation de référence de l'API Vertex AI en langage Python.

import base64

from google.cloud import aiplatform
from google.cloud.aiplatform.gapic.schema import predict

def predict_image_object_detection_sample(
    project: str,
    endpoint_id: str,
    filename: str,
    location: str = "us-central1",
    api_endpoint: str = "us-central1-aiplatform.googleapis.com",
):
    # The AI Platform services require regional API endpoints.
    client_options = {"api_endpoint": api_endpoint}
    # Initialize client that will be used to create and send requests.
    # This client only needs to be created once, and can be reused for multiple requests.
    client = aiplatform.gapic.PredictionServiceClient(client_options=client_options)
    with open(filename, "rb") as f:
        file_content = f.read()

    # The format of each instance should conform to the deployed model's prediction input schema.
    encoded_content = base64.b64encode(file_content).decode("utf-8")
    instance = predict.instance.ImageObjectDetectionPredictionInstance(
        content=encoded_content,
    ).to_value()
    instances = [instance]
    # See gs://google-cloud-aiplatform/schema/predict/params/image_object_detection_1.0.0.yaml for the format of the parameters.
    parameters = predict.params.ImageObjectDetectionPredictionParams(
        confidence_threshold=0.5, max_predictions=5,
    ).to_value()
    endpoint = client.endpoint_path(
        project=project, location=location, endpoint=endpoint_id
    )
    response = client.predict(
        endpoint=endpoint, instances=instances, parameters=parameters
    )
    print("response")
    print(" deployed_model_id:", response.deployed_model_id)
    # See gs://google-cloud-aiplatform/schema/predict/prediction/image_object_detection_1.0.0.yaml for the format of the predictions.
    predictions = response.predictions
    for prediction in predictions:
        print(" prediction:", dict(prediction))

Tabulaire

Les objectifs tabulaires incluent la classification et la régression.

Classification

gcloud

  1. Créez un fichier nommé request.json avec le contenu suivant :

    {
      "instances": [
        {
          PREDICTION_DATA_ROW
        }
      ]
    }
    

    Remplacez l'élément suivant :

    • PREDICTION_DATA_ROW : objet JSON avec des clés comme noms de caractéristiques et des valeurs en tant que valeurs de caractéristiques correspondantes. Par exemple, pour un ensemble de données comportant trois caractéristiques : un nombre, un tableau de chaînes et une catégorie, la ligne de données peut ressembler à l'exemple de requête suivant :

      "length":3.6,
      "material":"cotton",
      "tag_array": ["abc","def"]
      

      Vous devez fournir une valeur pour chaque caractéristique incluse dans l'entraînement.

  2. Exécutez la commande suivante :

    gcloud ai endpoints predict ENDPOINT_ID \
      --region=LOCATION \
      --json-request=request.json
    

    Remplacez l'élément suivant :

    • ENDPOINT_ID : ID du point de terminaison.
    • LOCATION: région dans laquelle vous utilisez l'IA Vertex.

API REST et ligne de commande

Vous utilisez la méthode endpoints.predict pour demander une prédiction en ligne.

L'exemple suivant montre une requête de prédiction en ligne pour un modèle de classification tabulaire sans attribution de caractéristiques locales. Si vous souhaitez renvoyer les attributions de caractéristiques locales, consultez la section Obtenir des explications.

Avant d'utiliser les données de requête ci-dessous, effectuez les remplacements suivants :

  • LOCATION : région où se trouve le point de terminaison. Exemple :us-central1
  • PROJECT : ID de votre projet ou numéro de projet.
  • ENDPOINT_ID : ID du point de terminaison.
  • PREDICTION_DATA_ROW : objet JSON avec des clés comme noms de caractéristiques et des valeurs en tant que valeurs de caractéristiques correspondantes. Par exemple, pour un ensemble de données comportant trois caractéristiques : un nombre, un tableau de chaînes et une catégorie, la ligne de données peut ressembler à l'exemple de requête suivant :

    "length":3.6,
    "material":"cotton",
    "tag_array": ["abc","def"]
    

    Vous devez fournir une valeur pour chaque caractéristique incluse dans l'entraînement.

  • DEPLOYED_MODEL_ID : sortie générée par la méthode predict et acceptée en tant qu'entrée par la méthode explain. ID du modèle utilisé pour générer la prédiction. Si vous devez demander des explications pour une prédiction précédemment demandée et que vous avez déployé plusieurs modèles, vous pouvez utiliser cet ID pour vous assurer que les explications sont renvoyées pour le modèle qui a fourni la prédiction précédente.

Méthode HTTP et URL :

POST https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/endpoints/ENDPOINT_ID:predict

Corps JSON de la requête :

{
  "instances": [
    {
      PREDICTION_DATA_ROW
    }
  ]
}

Pour envoyer votre requête, choisissez l'une des options suivantes :

curl

Enregistrez le corps de la requête dans un fichier nommé request.json, puis exécutez la commande suivante :

curl -X POST \
-H "Authorization: Bearer "$(gcloud auth application-default print-access-token) \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/endpoints/ENDPOINT_ID:predict"

PowerShell

Enregistrez le corps de la requête dans un fichier nommé request.json, puis exécutez la commande suivante :

$cred = gcloud auth application-default print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/endpoints/ENDPOINT_ID:predict" | Select-Object -Expand Content

Vous devriez recevoir une réponse JSON de ce type :

{
  "predictions": [
    {
      "scores": [
        0.96771615743637085,
        0.032283786684274673
      ],
      "classes": [
        "0",
        "1"
      ]
   }
  ]
  "deployedModelId": "2429510197"
}

Java

Pour savoir comment installer et utiliser la bibliothèque cliente pour Vertex AI, consultez la page Bibliothèques clientes Vertex AI. Pour en savoir plus, consultez la documentation de référence de l'API Vertex AI en langage Java.


import com.google.cloud.aiplatform.util.ValueConverter;
import com.google.cloud.aiplatform.v1.EndpointName;
import com.google.cloud.aiplatform.v1.PredictResponse;
import com.google.cloud.aiplatform.v1.PredictionServiceClient;
import com.google.cloud.aiplatform.v1.PredictionServiceSettings;
import com.google.cloud.aiplatform.v1.schema.predict.prediction.TabularClassificationPredictionResult;
import com.google.protobuf.ListValue;
import com.google.protobuf.Value;
import com.google.protobuf.util.JsonFormat;
import java.io.IOException;
import java.util.List;

public class PredictTabularClassificationSample {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String project = "YOUR_PROJECT_ID";
    String instance = "[{ “feature_column_a”: “value”, “feature_column_b”: “value”}]";
    String endpointId = "YOUR_ENDPOINT_ID";
    predictTabularClassification(instance, project, endpointId);
  }

  static void predictTabularClassification(String instance, String project, String endpointId)
      throws IOException {
    PredictionServiceSettings predictionServiceSettings =
        PredictionServiceSettings.newBuilder()
            .setEndpoint("us-central1-aiplatform.googleapis.com:443")
            .build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (PredictionServiceClient predictionServiceClient =
        PredictionServiceClient.create(predictionServiceSettings)) {
      String location = "us-central1";
      EndpointName endpointName = EndpointName.of(project, location, endpointId);

      ListValue.Builder listValue = ListValue.newBuilder();
      JsonFormat.parser().merge(instance, listValue);
      List<Value> instanceList = listValue.getValuesList();

      Value parameters = Value.newBuilder().setListValue(listValue).build();
      PredictResponse predictResponse =
          predictionServiceClient.predict(endpointName, instanceList, parameters);
      System.out.println("Predict Tabular Classification Response");
      System.out.format("\tDeployed Model Id: %s\n", predictResponse.getDeployedModelId());

      System.out.println("Predictions");
      for (Value prediction : predictResponse.getPredictionsList()) {
        TabularClassificationPredictionResult.Builder resultBuilder =
            TabularClassificationPredictionResult.newBuilder();
        TabularClassificationPredictionResult result =
            (TabularClassificationPredictionResult)
                ValueConverter.fromValue(resultBuilder, prediction);

        for (int i = 0; i < result.getClassesCount(); i++) {
          System.out.printf("\tClass: %s", result.getClasses(i));
          System.out.printf("\tScore: %f", result.getScores(i));
        }
      }
    }
  }
}

Node.js

Pour savoir comment installer et utiliser la bibliothèque cliente pour Vertex AI, consultez la page Bibliothèques clientes Vertex AI. Pour en savoir plus, consultez la documentation de référence de l'API Vertex AI en langage Node.js.

/**
 * TODO(developer): Uncomment these variables before running the sample.\
 * (Not necessary if passing values as arguments)
 */

// const endpointId = 'YOUR_ENDPOINT_ID';
// const project = 'YOUR_PROJECT_ID';
// const location = 'YOUR_PROJECT_LOCATION';
const aiplatform = require('@google-cloud/aiplatform');
const {prediction} =
  aiplatform.protos.google.cloud.aiplatform.v1.schema.predict;

// Imports the Google Cloud Prediction service client
const {PredictionServiceClient} = aiplatform.v1;

// Import the helper module for converting arbitrary protobuf.Value objects.
const {helpers} = aiplatform;

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: 'us-central1-aiplatform.googleapis.com',
};

// Instantiates a client
const predictionServiceClient = new PredictionServiceClient(clientOptions);

async function predictTablesClassification() {
  // Configure the endpoint resource
  const endpoint = `projects/${project}/locations/${location}/endpoints/${endpointId}`;
  const parameters = helpers.toValue({});

  const instance = helpers.toValue({
    petal_length: '1.4',
    petal_width: '1.3',
    sepal_length: '5.1',
    sepal_width: '2.8',
  });

  const instances = [instance];
  const request = {
    endpoint,
    instances,
    parameters,
  };

  // Predict request
  const [response] = await predictionServiceClient.predict(request);

  console.log('Predict tabular classification response');
  console.log(`\tDeployed model id : ${response.deployedModelId}\n`);
  const predictions = response.predictions;
  console.log('Predictions :');
  for (const predictionResultVal of predictions) {
    const predictionResultObj =
      prediction.TabularClassificationPredictionResult.fromValue(
        predictionResultVal
      );
    for (const [i, class_] of predictionResultObj.classes.entries()) {
      console.log(`\tClass: ${class_}`);
      console.log(`\tScore: ${predictionResultObj.scores[i]}\n\n`);
    }
  }
}
predictTablesClassification();

Python

Pour savoir comment installer et utiliser la bibliothèque cliente pour Vertex AI, consultez la page Bibliothèques clientes Vertex AI. Pour en savoir plus, consultez la documentation de référence de l'API Vertex AI en langage Python.

def predict_tabular_classification_sample(
    project: str,
    location: str,
    endpoint_name: str,
    instances: List[Dict],
):
    '''
    Args
        project: Your project ID or project number.
        location: Region where Endpoint is located. For example, 'us-central1'.
        endpoint_name: A fully qualified endpoint name or endpoint ID. Example: "projects/123/locations/us-central1/endpoints/456" or
               "456" when project and location are initialized or passed.
        instances: A list of one or more instances (examples) to return a prediction for.
    '''
    aiplatform.init(project=project, location=location)

    endpoint = aiplatform.Endpoint(endpoint_name)

    response = endpoint.predict(instances=instances)

    for prediction_ in response.predictions:
        print(prediction_)

Prévision

Les modèles de prévision ne sont pas compatibles avec les prédictions en ligne. Utilisez plutôt les prédictions par lot.

Régression

gcloud

  1. Créez un fichier nommé request.json avec le contenu suivant :

    {
      "instances": [
        {
          PREDICTION_DATA_ROW
        }
      ]
    }
    

    Remplacez l'élément suivant :

    • PREDICTION_DATA_ROW : objet JSON avec des clés comme noms de caractéristiques et des valeurs en tant que valeurs de caractéristiques correspondantes. Par exemple, pour un ensemble de données comportant trois caractéristiques : un nombre, un tableau de nombres et une catégorie, la ligne de données peut ressembler à l'exemple de requête suivant :

      "age":3.6,
      "sq_ft":5392,
      "code": "90331"
      

      Vous devez fournir une valeur pour chaque caractéristique incluse dans l'entraînement.

  2. Exécutez la commande suivante :

    gcloud ai endpoints predict ENDPOINT_ID \
      --region=LOCATION \
      --json-request=request.json
    

    Remplacez l'élément suivant :

    • ENDPOINT_ID : ID du point de terminaison.
    • LOCATION: région dans laquelle vous utilisez l'IA Vertex.

API REST et ligne de commande

Vous utilisez la méthode endpoints.predict pour demander une prédiction en ligne.

L'exemple suivant montre une requête de prédiction en ligne pour un modèle de régression tabulaire sans attribution de caractéristiques locales. Si vous souhaitez renvoyer les attributions de caractéristiques locales, consultez la section Obtenir des explications.

Avant d'utiliser les données de requête ci-dessous, effectuez les remplacements suivants :

  • LOCATION : région où se trouve le point de terminaison. Exemple :us-central1
  • PROJECT : ID de votre projet ou numéro de projet.
  • ENDPOINT_ID : ID du point de terminaison.
  • PREDICTION_DATA_ROW : objet JSON avec des clés comme noms de caractéristiques et des valeurs en tant que valeurs de caractéristiques correspondantes. Par exemple, pour un ensemble de données comportant trois caractéristiques : un nombre, un tableau de nombres et une catégorie, la ligne de données peut ressembler à l'exemple de requête suivant :

    "age":3.6,
    "sq_ft":5392,
    "code": "90331"
    

    Vous devez fournir une valeur pour chaque caractéristique incluse dans l'entraînement.

  • DEPLOYED_MODEL_ID : sortie générée par la méthode predict et acceptée en tant qu'entrée par la méthode explain. ID du modèle utilisé pour générer la prédiction. Si vous devez demander des explications pour une prédiction précédemment demandée et que vous avez déployé plusieurs modèles, vous pouvez utiliser cet ID pour vous assurer que les explications sont renvoyées pour le modèle qui a fourni la prédiction précédente.

Méthode HTTP et URL :

POST https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/endpoints/ENDPOINT_ID:predict

Corps JSON de la requête :

{
  "instances": [
    {
      PREDICTION_DATA_ROW
    }
  ]
}

Pour envoyer votre requête, choisissez l'une des options suivantes :

curl

Enregistrez le corps de la requête dans un fichier nommé request.json, puis exécutez la commande suivante :

curl -X POST \
-H "Authorization: Bearer "$(gcloud auth application-default print-access-token) \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/endpoints/ENDPOINT_ID:predict"

PowerShell

Enregistrez le corps de la requête dans un fichier nommé request.json, puis exécutez la commande suivante :

$cred = gcloud auth application-default print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/endpoints/ENDPOINT_ID:predict" | Select-Object -Expand Content

Vous devriez recevoir une réponse JSON de ce type :

{
  "predictions": [
    [
      {
        "value": 65.14233,
        "lower_bound": 4.6572
        "upper_bound": 164.0279
      }
    ]
  ],
  "deployedModelId": "DEPLOYED_MODEL_ID"
}

Java

Pour savoir comment installer et utiliser la bibliothèque cliente pour Vertex AI, consultez la page Bibliothèques clientes Vertex AI. Pour en savoir plus, consultez la documentation de référence de l'API Vertex AI en langage Java.


import com.google.cloud.aiplatform.util.ValueConverter;
import com.google.cloud.aiplatform.v1.EndpointName;
import com.google.cloud.aiplatform.v1.PredictResponse;
import com.google.cloud.aiplatform.v1.PredictionServiceClient;
import com.google.cloud.aiplatform.v1.PredictionServiceSettings;
import com.google.cloud.aiplatform.v1.schema.predict.prediction.TabularRegressionPredictionResult;
import com.google.protobuf.ListValue;
import com.google.protobuf.Value;
import com.google.protobuf.util.JsonFormat;
import java.io.IOException;
import java.util.List;

public class PredictTabularRegressionSample {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String project = "YOUR_PROJECT_ID";
    String instance = "[{ “feature_column_a”: “value”, “feature_column_b”: “value”}]";
    String endpointId = "YOUR_ENDPOINT_ID";
    predictTabularRegression(instance, project, endpointId);
  }

  static void predictTabularRegression(String instance, String project, String endpointId)
      throws IOException {
    PredictionServiceSettings predictionServiceSettings =
        PredictionServiceSettings.newBuilder()
            .setEndpoint("us-central1-aiplatform.googleapis.com:443")
            .build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (PredictionServiceClient predictionServiceClient =
        PredictionServiceClient.create(predictionServiceSettings)) {
      String location = "us-central1";
      EndpointName endpointName = EndpointName.of(project, location, endpointId);

      ListValue.Builder listValue = ListValue.newBuilder();
      JsonFormat.parser().merge(instance, listValue);
      List<Value> instanceList = listValue.getValuesList();

      Value parameters = Value.newBuilder().setListValue(listValue).build();
      PredictResponse predictResponse =
          predictionServiceClient.predict(endpointName, instanceList, parameters);
      System.out.println("Predict Tabular Regression Response");
      System.out.format("\tDisplay Model Id: %s\n", predictResponse.getDeployedModelId());

      System.out.println("Predictions");
      for (Value prediction : predictResponse.getPredictionsList()) {
        TabularRegressionPredictionResult.Builder resultBuilder =
            TabularRegressionPredictionResult.newBuilder();

        TabularRegressionPredictionResult result =
            (TabularRegressionPredictionResult) ValueConverter.fromValue(resultBuilder, prediction);

        System.out.printf("\tUpper bound: %f\n", result.getUpperBound());
        System.out.printf("\tLower bound: %f\n", result.getLowerBound());
        System.out.printf("\tValue: %f\n", result.getValue());
      }
    }
  }
}

Node.js

Pour savoir comment installer et utiliser la bibliothèque cliente pour Vertex AI, consultez la page Bibliothèques clientes Vertex AI. Pour en savoir plus, consultez la documentation de référence de l'API Vertex AI en langage Node.js.

/**
 * TODO(developer): Uncomment these variables before running the sample.\
 * (Not necessary if passing values as arguments)
 */

// const endpointId = 'YOUR_ENDPOINT_ID';
// const project = 'YOUR_PROJECT_ID';
// const location = 'YOUR_PROJECT_LOCATION';
const aiplatform = require('@google-cloud/aiplatform');
const {prediction} =
  aiplatform.protos.google.cloud.aiplatform.v1.schema.predict;

// Imports the Google Cloud Prediction service client
const {PredictionServiceClient} = aiplatform.v1;

// Import the helper module for converting arbitrary protobuf.Value objects.
const {helpers} = aiplatform;

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: 'us-central1-aiplatform.googleapis.com',
};

// Instantiates a client
const predictionServiceClient = new PredictionServiceClient(clientOptions);

async function predictTablesRegression() {
  // Configure the endpoint resource
  const endpoint = `projects/${project}/locations/${location}/endpoints/${endpointId}`;
  const parameters = helpers.toValue({});

  // TODO (erschmid): Make this less painful
  const instance = helpers.toValue({
    BOOLEAN_2unique_NULLABLE: false,
    DATETIME_1unique_NULLABLE: '2019-01-01 00:00:00',
    DATE_1unique_NULLABLE: '2019-01-01',
    FLOAT_5000unique_NULLABLE: 1611,
    FLOAT_5000unique_REPEATED: [2320, 1192],
    INTEGER_5000unique_NULLABLE: '8',
    NUMERIC_5000unique_NULLABLE: 16,
    STRING_5000unique_NULLABLE: 'str-2',
    STRUCT_NULLABLE: {
      BOOLEAN_2unique_NULLABLE: false,
      DATE_1unique_NULLABLE: '2019-01-01',
      DATETIME_1unique_NULLABLE: '2019-01-01 00:00:00',
      FLOAT_5000unique_NULLABLE: 1308,
      FLOAT_5000unique_REPEATED: [2323, 1178],
      FLOAT_5000unique_REQUIRED: 3089,
      INTEGER_5000unique_NULLABLE: '1777',
      NUMERIC_5000unique_NULLABLE: 3323,
      TIME_1unique_NULLABLE: '23:59:59.999999',
      STRING_5000unique_NULLABLE: 'str-49',
      TIMESTAMP_1unique_NULLABLE: '1546387199999999',
    },
    TIMESTAMP_1unique_NULLABLE: '1546387199999999',
    TIME_1unique_NULLABLE: '23:59:59.999999',
  });

  const instances = [instance];
  const request = {
    endpoint,
    instances,
    parameters,
  };

  // Predict request
  const [response] = await predictionServiceClient.predict(request);

  console.log('Predict tabular regression response');
  console.log(`\tDeployed model id : ${response.deployedModelId}`);
  const predictions = response.predictions;
  console.log('\tPredictions :');
  for (const predictionResultVal of predictions) {
    const predictionResultObj =
      prediction.TabularRegressionPredictionResult.fromValue(
        predictionResultVal
      );
    console.log(`\tUpper bound: ${predictionResultObj.upper_bound}`);
    console.log(`\tLower bound: ${predictionResultObj.lower_bound}`);
    console.log(`\tLower bound: ${predictionResultObj.value}`);
  }
}
predictTablesRegression();

Python

Pour savoir comment installer et utiliser la bibliothèque cliente pour Vertex AI, consultez la page Bibliothèques clientes Vertex AI. Pour en savoir plus, consultez la documentation de référence de l'API Vertex AI en langage Python.

def predict_tabular_regression_sample(
    project: str,
    location: str,
    endpoint_name: str,
    instances: List[Dict],
):
    aiplatform.init(project=project, location=location)

    endpoint = aiplatform.Endpoint(endpoint_name)

    response = endpoint.predict(instances=instances)

    for prediction_ in response.predictions:
        print(prediction_)

Texte

Les objectifs pour les données de type textuel incluent la classification, l'extraction d'entités et l'analyse des sentiments.

Classification

gcloud

  1. Créez un fichier nommé request.json avec le contenu suivant :

    {
      "instances": [{
        "mimeType": "text/plain",
        "content": "CONTENT"
      }]
    }
    

    Remplacez l'élément suivant :

    • CONTENT : extrait de texte sur lequel effectuer une prédiction
  2. Exécutez la commande suivante :

    gcloud ai endpoints predict ENDPOINT_ID \
      --region=LOCATION \
      --json-request=request.json
    

    Remplacez l'élément suivant :

    • ENDPOINT_ID : ID du point de terminaison.
    • LOCATION: région dans laquelle vous utilisez l'IA Vertex.

API REST et ligne de commande

Avant d'utiliser les données de requête ci-dessous, effectuez les remplacements suivants :

  • LOCATION : région où se trouve le point de terminaison. Exemple : us-central1.
  • PROJECT : ID ou numéro de votre projet.
  • ENDPOINT_ID : ID du point de terminaison.
  • CONTENT : extrait de texte sur lequel effectuer une prédiction
  • DEPLOYED_MODEL_ID : ID du modèle déployé qui a été utilisé pour effectuer la prédiction.

Méthode HTTP et URL :

POST https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/endpoints/ENDPOINT_ID:predict

Corps JSON de la requête :

{
  "instances": [{
    "mimeType": "text/plain",
    "content": "CONTENT"
  }]
}

Pour envoyer votre requête, choisissez l'une des options suivantes :

curl

Enregistrez le corps de la requête dans un fichier nommé request.json, puis exécutez la commande suivante :

curl -X POST \
-H "Authorization: Bearer "$(gcloud auth application-default print-access-token) \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/endpoints/ENDPOINT_ID:predict"

PowerShell

Enregistrez le corps de la requête dans un fichier nommé request.json, puis exécutez la commande suivante :

$cred = gcloud auth application-default print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/endpoints/ENDPOINT_ID:predict" | Select-Object -Expand Content

Vous devriez recevoir une réponse JSON de ce type :

{
  "predictions": [
    {
      "ids": [
        "1234567890123456789",
        "2234567890123456789",
        "3234567890123456789"
      ],
      "displayNames": [
        "GreatService",
        "Suggestion",
        "InfoRequest"
      ],
      "confidences": [
        0.8986392080783844,
        0.81984345316886902,
        0.7722353458404541
      ]
    }
  ],
  "deployedModelId": "0123456789012345678"
}

Java

Pour savoir comment installer et utiliser la bibliothèque cliente pour Vertex AI, consultez la page Bibliothèques clientes Vertex AI. Pour en savoir plus, consultez la documentation de référence de l'API Vertex AI en langage Java.

import com.google.cloud.aiplatform.util.ValueConverter;
import com.google.cloud.aiplatform.v1.EndpointName;
import com.google.cloud.aiplatform.v1.PredictResponse;
import com.google.cloud.aiplatform.v1.PredictionServiceClient;
import com.google.cloud.aiplatform.v1.PredictionServiceSettings;
import com.google.cloud.aiplatform.v1.schema.predict.instance.TextClassificationPredictionInstance;
import com.google.cloud.aiplatform.v1.schema.predict.prediction.ClassificationPredictionResult;
import com.google.protobuf.Value;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;

public class PredictTextClassificationSingleLabelSample {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String project = "YOUR_PROJECT_ID";
    String content = "YOUR_TEXT_CONTENT";
    String endpointId = "YOUR_ENDPOINT_ID";

    predictTextClassificationSingleLabel(project, content, endpointId);
  }

  static void predictTextClassificationSingleLabel(
      String project, String content, String endpointId) throws IOException {
    PredictionServiceSettings predictionServiceSettings =
        PredictionServiceSettings.newBuilder()
            .setEndpoint("us-central1-aiplatform.googleapis.com:443")
            .build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (PredictionServiceClient predictionServiceClient =
        PredictionServiceClient.create(predictionServiceSettings)) {
      String location = "us-central1";
      EndpointName endpointName = EndpointName.of(project, location, endpointId);

      TextClassificationPredictionInstance predictionInstance =
          TextClassificationPredictionInstance.newBuilder().setContent(content).build();

      List<Value> instances = new ArrayList<>();
      instances.add(ValueConverter.toValue(predictionInstance));

      PredictResponse predictResponse =
          predictionServiceClient.predict(endpointName, instances, ValueConverter.EMPTY_VALUE);
      System.out.println("Predict Text Classification Response");
      System.out.format("\tDeployed Model Id: %s\n", predictResponse.getDeployedModelId());

      System.out.println("Predictions:\n\n");
      for (Value prediction : predictResponse.getPredictionsList()) {

        ClassificationPredictionResult.Builder resultBuilder =
            ClassificationPredictionResult.newBuilder();

        // Display names and confidences values correspond to
        // IDs in the ID list.
        ClassificationPredictionResult result =
            (ClassificationPredictionResult) ValueConverter.fromValue(resultBuilder, prediction);
        int counter = 0;
        for (Long id : result.getIdsList()) {
          System.out.printf("Label ID: %d\n", id);
          System.out.printf("Label: %s\n", result.getDisplayNames(counter));
          System.out.printf("Confidence: %.4f\n", result.getConfidences(counter));
          counter++;
        }
      }
    }
  }
}

Node.js

Pour savoir comment installer et utiliser la bibliothèque cliente pour Vertex AI, consultez la page Bibliothèques clientes Vertex AI. Pour en savoir plus, consultez la documentation de référence de l'API Vertex AI en langage Node.js.

/**
 * TODO(developer): Uncomment these variables before running the sample.\
 * (Not necessary if passing values as arguments)
 */

// const text = 'YOUR_PREDICTION_TEXT';
// const endpointId = 'YOUR_ENDPOINT_ID';
// const project = 'YOUR_PROJECT_ID';
// const location = 'YOUR_PROJECT_LOCATION';
const aiplatform = require('@google-cloud/aiplatform');
const {instance, prediction} =
  aiplatform.protos.google.cloud.aiplatform.v1.schema.predict;

// Imports the Google Cloud Model Service Client library
const {PredictionServiceClient} = aiplatform.v1;

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: 'us-central1-aiplatform.googleapis.com',
};

// Instantiates a client
const predictionServiceClient = new PredictionServiceClient(clientOptions);

async function predictTextClassification() {
  // Configure the resources
  const endpoint = `projects/${project}/locations/${location}/endpoints/${endpointId}`;

  const predictionInstance =
    new instance.TextClassificationPredictionInstance({
      content: text,
    });
  const instanceValue = predictionInstance.toValue();

  const instances = [instanceValue];
  const request = {
    endpoint,
    instances,
  };

  const [response] = await predictionServiceClient.predict(request);
  console.log('Predict text classification response');
  console.log(`\tDeployed model id : ${response.deployedModelId}\n\n`);

  console.log('Prediction results:');

  for (const predictionResultValue of response.predictions) {
    const predictionResult =
      prediction.ClassificationPredictionResult.fromValue(
        predictionResultValue
      );

    for (const [i, label] of predictionResult.displayNames.entries()) {
      console.log(`\tDisplay name: ${label}`);
      console.log(`\tConfidences: ${predictionResult.confidences[i]}`);
      console.log(`\tIDs: ${predictionResult.ids[i]}\n\n`);
    }
  }
}
predictTextClassification();

Python

Pour savoir comment installer et utiliser la bibliothèque cliente pour Vertex AI, consultez la page Bibliothèques clientes Vertex AI. Pour en savoir plus, consultez la documentation de référence de l'API Vertex AI en langage Python.

def predict_text_classification_single_label_sample(
    project, location, endpoint, content
):
    aiplatform.init(project=project, location=location)

    endpoint = aiplatform.Endpoint(endpoint)

    response = endpoint.predict(instances=[{"content": content}], parameters={})

    for prediction_ in response.predictions:
        print(prediction_)

Extraction d'entités

gcloud

  1. Créez un fichier nommé request.json avec le contenu suivant :

    {
      "instances": [{
        "mimeType": "text/plain",
        "content": "CONTENT"
      }]
    }
    

    Remplacez l'élément suivant :

    • CONTENT : extrait de texte sur lequel effectuer une prédiction
  2. Exécutez la commande suivante :

    gcloud ai endpoints predict ENDPOINT_ID \
      --region=LOCATION \
      --json-request=request.json
    

    Remplacez l'élément suivant :

    • ENDPOINT_ID : ID du point de terminaison.
    • LOCATION: région dans laquelle vous utilisez l'IA Vertex.

API REST et ligne de commande

Avant d'utiliser les données de requête ci-dessous, effectuez les remplacements suivants :

  • LOCATION : région où se trouve le point de terminaison. Exemple : us-central1.
  • PROJECT : ID ou numéro de votre projet.
  • ENDPOINT_ID : ID du point de terminaison.
  • CONTENT : extrait de texte sur lequel effectuer une prédiction
  • DEPLOYED_MODEL_ID : ID du modèle déployé qui a été utilisé pour effectuer la prédiction.

Méthode HTTP et URL :

POST https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/endpoints/ENDPOINT_ID:predict

Corps JSON de la requête :

{
  "instances": [{
    "mimeType": "text/plain",
    "content": "CONTENT"
  }]
}

Pour envoyer votre requête, choisissez l'une des options suivantes :

curl

Enregistrez le corps de la requête dans un fichier nommé request.json, puis exécutez la commande suivante :

curl -X POST \
-H "Authorization: Bearer "$(gcloud auth application-default print-access-token) \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/endpoints/ENDPOINT_ID:predict"

PowerShell

Enregistrez le corps de la requête dans un fichier nommé request.json, puis exécutez la commande suivante :

$cred = gcloud auth application-default print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/endpoints/ENDPOINT_ID:predict" | Select-Object -Expand Content

Vous devriez recevoir une réponse JSON de ce type :

{
  "predictions": {
    "ids": [
      "1234567890123456789",
      "2234567890123456789",
      "3234567890123456789"
    ],
    "displayNames": [
      "SpecificDisease",
      "DiseaseClass",
      "SpecificDisease"
    ],
    "textSegmentStartOffsets":  [13, 40, 57],
    "textSegmentEndOffsets": [29, 51, 75],
    "confidences": [
      0.99959725141525269,
      0.99912621492484128,
      0.99935531616210938
    ]
  },
  "deployedModelId": "0123456789012345678"
}

Java

Pour savoir comment installer et utiliser la bibliothèque cliente pour Vertex AI, consultez la page Bibliothèques clientes Vertex AI. Pour en savoir plus, consultez la documentation de référence de l'API Vertex AI en langage Java.


import com.google.cloud.aiplatform.util.ValueConverter;
import com.google.cloud.aiplatform.v1.EndpointName;
import com.google.cloud.aiplatform.v1.PredictResponse;
import com.google.cloud.aiplatform.v1.PredictionServiceClient;
import com.google.cloud.aiplatform.v1.PredictionServiceSettings;
import com.google.cloud.aiplatform.v1.schema.predict.instance.TextExtractionPredictionInstance;
import com.google.cloud.aiplatform.v1.schema.predict.prediction.TextExtractionPredictionResult;
import com.google.protobuf.Value;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;

public class PredictTextEntityExtractionSample {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String project = "YOUR_PROJECT_ID";
    String content = "YOUR_TEXT_CONTENT";
    String endpointId = "YOUR_ENDPOINT_ID";

    predictTextEntityExtraction(project, content, endpointId);
  }

  static void predictTextEntityExtraction(String project, String content, String endpointId)
      throws IOException {
    PredictionServiceSettings predictionServiceSettings =
        PredictionServiceSettings.newBuilder()
            .setEndpoint("us-central1-aiplatform.googleapis.com:443")
            .build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (PredictionServiceClient predictionServiceClient =
        PredictionServiceClient.create(predictionServiceSettings)) {
      String location = "us-central1";
      String jsonString = "{\"content\": \"" + content + "\"}";

      EndpointName endpointName = EndpointName.of(project, location, endpointId);

      TextExtractionPredictionInstance instance =
          TextExtractionPredictionInstance.newBuilder().setContent(content).build();

      List<Value> instances = new ArrayList<>();
      instances.add(ValueConverter.toValue(instance));

      PredictResponse predictResponse =
          predictionServiceClient.predict(endpointName, instances, ValueConverter.EMPTY_VALUE);
      System.out.println("Predict Text Entity Extraction Response");
      System.out.format("\tDeployed Model Id: %s\n", predictResponse.getDeployedModelId());

      System.out.println("Predictions");
      for (Value prediction : predictResponse.getPredictionsList()) {
        TextExtractionPredictionResult.Builder resultBuilder =
            TextExtractionPredictionResult.newBuilder();

        TextExtractionPredictionResult result =
            (TextExtractionPredictionResult) ValueConverter.fromValue(resultBuilder, prediction);

        for (int i = 0; i < result.getIdsCount(); i++) {
          long textStartOffset = result.getTextSegmentStartOffsets(i);
          long textEndOffset = result.getTextSegmentEndOffsets(i);
          String entity = content.substring((int) textStartOffset, (int) textEndOffset);

          System.out.format("\tEntity: %s\n", entity);
          System.out.format("\tEntity type: %s\n", result.getDisplayNames(i));
          System.out.format("\tConfidences: %f\n", result.getConfidences(i));
          System.out.format("\tIDs: %d\n", result.getIds(i));
        }
      }
    }
  }
}

Node.js

Pour savoir comment installer et utiliser la bibliothèque cliente pour Vertex AI, consultez la page Bibliothèques clientes Vertex AI. Pour en savoir plus, consultez la documentation de référence de l'API Vertex AI en langage Node.js.

/**
 * TODO(developer): Uncomment these variables before running the sample.\
 * (Not necessary if passing values as arguments)
 */

// const text = "YOUR_PREDICTION_TEXT";
// const endpointId = "YOUR_ENDPOINT_ID";
// const project = 'YOUR_PROJECT_ID';
// const location = 'YOUR_PROJECT_LOCATION';
const aiplatform = require('@google-cloud/aiplatform');
const {instance, prediction} =
  aiplatform.protos.google.cloud.aiplatform.v1.schema.predict;

// Imports the Google Cloud Model Service Client library
const {PredictionServiceClient} = aiplatform.v1;

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: 'us-central1-aiplatform.googleapis.com',
};

// Instantiates a client
const predictionServiceClient = new PredictionServiceClient(clientOptions);

async function predictTextEntityExtraction() {
  // Configure the endpoint resource
  const endpoint = `projects/${project}/locations/${location}/endpoints/${endpointId}`;

  const instanceObj = new instance.TextExtractionPredictionInstance({
    content: text,
  });
  const instanceVal = instanceObj.toValue();
  const instances = [instanceVal];

  const request = {
    endpoint,
    instances,
  };

  // Predict request
  const [response] = await predictionServiceClient.predict(request);

  console.log('Predict text entity extraction response :');
  console.log(`\tDeployed model id : ${response.deployedModelId}`);

  console.log('\nPredictions :');
  for (const predictionResultValue of response.predictions) {
    const predictionResult =
      prediction.TextExtractionPredictionResult.fromValue(
        predictionResultValue
      );

    for (const [i, label] of predictionResult.displayNames.entries()) {
      const textStartOffset = parseInt(
        predictionResult.textSegmentStartOffsets[i]
      );
      const textEndOffset = parseInt(
        predictionResult.textSegmentEndOffsets[i]
      );
      const entity = text.substring(textStartOffset, textEndOffset);
      console.log(`\tEntity: ${entity}`);
      console.log(`\tEntity type: ${label}`);
      console.log(`\tConfidences: ${predictionResult.confidences[i]}`);
      console.log(`\tIDs: ${predictionResult.ids[i]}\n\n`);
    }
  }
}
predictTextEntityExtraction();

Python

Pour savoir comment installer et utiliser la bibliothèque cliente pour Vertex AI, consultez la page Bibliothèques clientes Vertex AI. Pour en savoir plus, consultez la documentation de référence de l'API Vertex AI en langage Python.

def predict_text_entity_extraction_sample(project, location, endpoint_id, content):

    aiplatform.init(project=project, location=location)

    endpoint = aiplatform.Endpoint(endpoint_id)

    response = endpoint.predict(instances=[{"content": content}], parameters={})

    for prediction_ in response.predictions:
        print(prediction_)

Analyse des sentiments

gcloud

  1. Créez un fichier nommé request.json avec le contenu suivant :

    {
      "instances": [{
        "mimeType": "text/plain",
        "content": "CONTENT"
      }]
    }
    

    Remplacez l'élément suivant :

    • CONTENT : extrait de texte sur lequel effectuer une prédiction
  2. Exécutez la commande suivante :

    gcloud ai endpoints predict ENDPOINT_ID \
      --region=LOCATION \
      --json-request=request.json
    

    Remplacez l'élément suivant :

    • ENDPOINT_ID : ID du point de terminaison.
    • LOCATION: région dans laquelle vous utilisez l'IA Vertex.

API REST et ligne de commande

Avant d'utiliser les données de requête ci-dessous, effectuez les remplacements suivants :

  • LOCATION : région où se trouve le point de terminaison. Exemple : us-central1.
  • PROJECT : ID ou numéro de votre projet.
  • ENDPOINT_ID : ID du point de terminaison.
  • CONTENT : extrait de texte sur lequel effectuer une prédiction
  • DEPLOYED_MODEL_ID : ID du modèle déployé qui a été utilisé pour effectuer la prédiction.

Méthode HTTP et URL :

POST https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/endpoints/ENDPOINT_ID:predict

Corps JSON de la requête :

{
  "instances": [{
    "mimeType": "text/plain",
    "content": "CONTENT"
  }]
}

Pour envoyer votre requête, choisissez l'une des options suivantes :

curl

Enregistrez le corps de la requête dans un fichier nommé request.json, puis exécutez la commande suivante :

curl -X POST \
-H "Authorization: Bearer "$(gcloud auth application-default print-access-token) \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/endpoints/ENDPOINT_ID:predict"

PowerShell

Enregistrez le corps de la requête dans un fichier nommé request.json, puis exécutez la commande suivante :

$cred = gcloud auth application-default print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/endpoints/ENDPOINT_ID:predict" | Select-Object -Expand Content

Vous devriez recevoir une réponse JSON de ce type :

{
  "prediction":
    {
      sentiment": 8
    },
  "deployedModelId": "1234567890123456789"
}

Java

Pour savoir comment installer et utiliser la bibliothèque cliente pour Vertex AI, consultez la page Bibliothèques clientes Vertex AI. Pour en savoir plus, consultez la documentation de référence de l'API Vertex AI en langage Java.


import com.google.cloud.aiplatform.v1.EndpointName;
import com.google.cloud.aiplatform.v1.PredictResponse;
import com.google.cloud.aiplatform.v1.PredictionServiceClient;
import com.google.cloud.aiplatform.v1.PredictionServiceSettings;
import com.google.protobuf.Value;
import com.google.protobuf.util.JsonFormat;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;

public class PredictTextSentimentAnalysisSample {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String project = "YOUR_PROJECT_ID";
    String content = "YOUR_TEXT_CONTENT";
    String endpointId = "YOUR_ENDPOINT_ID";

    predictTextSentimentAnalysis(project, content, endpointId);
  }

  static void predictTextSentimentAnalysis(String project, String content, String endpointId)
      throws IOException {
    PredictionServiceSettings predictionServiceSettings =
        PredictionServiceSettings.newBuilder()
            .setEndpoint("us-central1-aiplatform.googleapis.com:443")
            .build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (PredictionServiceClient predictionServiceClient =
        PredictionServiceClient.create(predictionServiceSettings)) {
      String location = "us-central1";
      String jsonString = "{\"content\": \"" + content + "\"}";

      EndpointName endpointName = EndpointName.of(project, location, endpointId);

      Value parameter = Value.newBuilder().setNumberValue(0).setNumberValue(5).build();
      Value.Builder instance = Value.newBuilder();
      JsonFormat.parser().merge(jsonString, instance);

      List<Value> instances = new ArrayList<>();
      instances.add(instance.build());

      PredictResponse predictResponse =
          predictionServiceClient.predict(endpointName, instances, parameter);
      System.out.println("Predict Text Sentiment Analysis Response");
      System.out.format("\tDeployed Model Id: %s\n", predictResponse.getDeployedModelId());

      System.out.println("Predictions");
      for (Value prediction : predictResponse.getPredictionsList()) {
        System.out.format("\tPrediction: %s\n", prediction);
      }
    }
  }
}

Node.js

Pour savoir comment installer et utiliser la bibliothèque cliente pour Vertex AI, consultez la page Bibliothèques clientes Vertex AI. Pour en savoir plus, consultez la documentation de référence de l'API Vertex AI en langage Node.js.

/**
 * TODO(developer): Uncomment these variables before running the sample.\
 * (Not necessary if passing values as arguments)
 */

// const text = "YOUR_PREDICTION_TEXT";
// const endpointId = "YOUR_ENDPOINT_ID";
// const project = 'YOUR_PROJECT_ID';
// const location = 'YOUR_PROJECT_LOCATION';
const aiplatform = require('@google-cloud/aiplatform');
const {instance, prediction} =
  aiplatform.protos.google.cloud.aiplatform.v1.schema.predict;

// Imports the Google Cloud Model Service Client library
const {PredictionServiceClient} = aiplatform.v1;

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: 'us-central1-aiplatform.googleapis.com',
};

// Instantiates a client
const predictionServiceClient = new PredictionServiceClient(clientOptions);

async function predictTextSentimentAnalysis() {
  // Configure the endpoint resource
  const endpoint = `projects/${project}/locations/${location}/endpoints/${endpointId}`;

  const instanceObj = new instance.TextSentimentPredictionInstance({
    content: text,
  });
  const instanceVal = instanceObj.toValue();

  const instances = [instanceVal];
  const request = {
    endpoint,
    instances,
  };

  // Predict request
  const [response] = await predictionServiceClient.predict(request);

  console.log('Predict text sentiment analysis response:');
  console.log(`\tDeployed model id : ${response.deployedModelId}`);

  console.log('\nPredictions :');
  for (const predictionResultValue of response.predictions) {
    const predictionResult =
      prediction.TextSentimentPredictionResult.fromValue(
        predictionResultValue
      );
    console.log(`\tSentiment measure: ${predictionResult.sentiment}`);
  }
}
predictTextSentimentAnalysis();

Python

Pour savoir comment installer et utiliser la bibliothèque cliente pour Vertex AI, consultez la page Bibliothèques clientes Vertex AI. Pour en savoir plus, consultez la documentation de référence de l'API Vertex AI en langage Python.

def predict_text_sentiment_analysis_sample(project, location, endpoint_id, content):

    aiplatform.init(project=project, location=location)

    endpoint = aiplatform.Endpoint(endpoint_id)

    response = endpoint.predict(instances=[{"content": content}], parameters={})

    for prediction_ in response.predictions:
        print(prediction_)

Obtenir des explications à partir de modèles tabulaires

Pour les modèles tabulaires AutoML, vous pouvez demander une prédiction en ligne avec des explications (également appelées attributions de caractéristiques), qui peuvent vous aider à voir comment votre modèle est arrivé à une prédiction. Les valeurs d'importance des caractéristiques locales indiquent dans quelle mesure chaque caractéristique a contribué au résultat de la prédiction pour cette prédiction.

Apprenez à interpréter les résultats de l'importance des caractéristiques locales.

Les attributions de caractéristiques sont incluses dans les prédictions d'IA Vertex via Vertex Explainable AI. Apprenez-en plus sur Explainable AI.

Console

Lorsque vous utilisez Cloud Console pour demander une prédiction en ligne, les valeurs d'importance des caractéristiques locales sont automatiquement renvoyées.

Si vous avez utilisé les valeurs de prédiction préremplies, les valeurs d'importance des caractéristiques locales sont toutes nulles. En effet, comme les valeurs préremplies sont les données de prédiction de base, la prédiction renvoyée correspond à la valeur de prédiction de référence.

gcloud

  1. Créez un fichier nommé request.json avec le contenu suivant :

    {
      "instances": [
        {
          PREDICTION_DATA_ROW
        }
      ]
    }
    

    Remplacez l'élément suivant :

    • PREDICTION_DATA_ROW : objet JSON avec des clés comme noms de caractéristiques et des valeurs en tant que valeurs de caractéristiques correspondantes. Par exemple, pour un ensemble de données comportant trois caractéristiques : un nombre, un tableau de chaînes et une catégorie, la ligne de données peut ressembler à l'exemple de requête suivant :

      "length":3.6,
      "material":"cotton",
      "tag_array": ["abc","def"]
      

      Vous devez fournir une valeur pour chaque caractéristique incluse dans l'entraînement.

  2. Exécutez la commande suivante :

    gcloud ai endpoints explain ENDPOINT_ID \
      --region=LOCATION \
      --json-request=request.json
    

    Remplacez l'élément suivant :

    • ENDPOINT_ID : ID du point de terminaison.
    • LOCATION : région dans laquelle vous utilisez Vertex AI.

    Si vous souhaitez envoyer une demande d'explication à une DeployedModel spécifique sur Endpoint, vous pouvez également spécifier l'option --deployed-model-id :

    gcloud ai endpoints explain ENDPOINT_ID \
      --region=LOCATION \
      --deployed-model-id=DEPLOYED_MODEL_ID \
      --json-request=request.json
    

    Outre les espaces réservés décrits précédemment, remplacez les éléments suivants :

    • DEPLOYED_MODEL_ID (facultatif): ID du modèle déployé pour lequel vous souhaitez obtenir des explications. L'ID est inclus dans la réponse de la méthode predict. Si vous devez demander des explications pour un modèle particulier et que plusieurs modèles sont déployés sur le même point de terminaison, vous pouvez utiliser cet ID pour vous assurer que les explications sont renvoyées pour ce modèle particulier.

API REST et ligne de commande

L'exemple suivant montre une requête de prédiction en ligne pour un modèle de classification tabulaire avec des attributions de caractéristiques locales. Le format de requête est le même pour les modèles de régression.

Avant d'utiliser les données de requête ci-dessous, effectuez les remplacements suivants :

  • LOCATION : région où se trouve le point de terminaison. Exemple :us-central1
  • PROJECT : ID de votre projet ou numéro de projet.
  • ENDPOINT_ID : ID du point de terminaison.
  • PREDICTION_DATA_ROW : objet JSON avec des clés comme noms de caractéristiques et des valeurs en tant que valeurs de caractéristiques correspondantes. Par exemple, pour un ensemble de données comportant trois caractéristiques : un nombre, un tableau de chaînes et une catégorie, la ligne de données peut ressembler à l'exemple de requête suivant :

    "length":3.6,
    "material":"cotton",
    "tag_array": ["abc","def"]
    

    Vous devez fournir une valeur pour chaque caractéristique incluse dans l'entraînement.

  • DEPLOYED_MODEL_ID (facultatif) : ID du modèle déployé pour lequel vous souhaitez obtenir des explications. L'ID est inclus dans la réponse de la méthode predict. Si vous devez demander des explications pour un modèle particulier et que plusieurs modèles sont déployés sur le même point de terminaison, vous pouvez utiliser cet ID pour vous assurer que les explications sont renvoyées pour ce modèle particulier.

Méthode HTTP et URL :

POST https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/endpoints/ENDPOINT_ID:explain

Corps JSON de la requête :

{
  "instances": [
    {
      PREDICTION_DATA_ROW
    }
  ],
  "deployedModelId": "DEPLOYED_MODEL_ID"
}

Pour envoyer votre requête, choisissez l'une des options suivantes :

curl

Enregistrez le corps de la requête dans un fichier nommé request.json, puis exécutez la commande suivante :

curl -X POST \
-H "Authorization: Bearer "$(gcloud auth application-default print-access-token) \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/endpoints/ENDPOINT_ID:explain"

PowerShell

Enregistrez le corps de la requête dans un fichier nommé request.json, puis exécutez la commande suivante :

$cred = gcloud auth application-default print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/endpoints/ENDPOINT_ID:explain" | Select-Object -Expand Content
 

Python

Pour savoir comment installer et utiliser la bibliothèque cliente pour Vertex AI, consultez la page Bibliothèques clientes Vertex AI. Pour en savoir plus, consultez la documentation de référence de l'API Vertex AI en langage Python.

def explain_tabular_sample(
    project: str, location: str, endpoint_id: str, instance_dict: Dict
):

    aiplatform.init(project=project, location=location)

    endpoint = aiplatform.Endpoint(endpoint_id)

    response = endpoint.explain(instances=[instance_dict], parameters={})

    for explanation in response.explanations:
        print(" explanation")
        # Feature attributions.
        attributions = explanation.attributions
        for attribution in attributions:
            print("  attribution")
            print("   baseline_output_value:", attribution.baseline_output_value)
            print("   instance_output_value:", attribution.instance_output_value)
            print("   output_display_name:", attribution.output_display_name)
            print("   approximation_error:", attribution.approximation_error)
            print("   output_name:", attribution.output_name)
            output_index = attribution.output_index
            for output_index in output_index:
                print("   output_index:", output_index)

    for prediction in response.predictions:
        print(prediction)

Pour obtenir un exemple de réponse et des informations sur l'interprétation de vos résultats, consultez la section Interpréter les résultats de prédiction des modèles AutoML.

Obtenir des explications sur une prédiction précédemment renvoyée

Étant donné que les explications augmentent l'utilisation des ressources, vous souhaiterez peut-être réserver des explications au cas où vous en auriez besoin. Parfois, il peut être utile de demander des explications pour un résultat de prédiction que vous avez déjà reçu, peut-être parce que la prédiction présentait une anomalie ou n'a pas été logique.

Si toutes vos prédictions proviennent du même modèle, il vous suffit de renvoyer les données de requête, en indiquant que vous souhaitez cette fois obtenir des explications. Cependant, si plusieurs modèles renvoient des prédictions, vous devez vous assurer d'envoyer la requête d'explication au modèle approprié. Vous pouvez afficher les explications d'un modèle particulier en incluant l'ID du modèle déployé dans votre requête, qui est inclus dans la réponse à la requête de prédiction d'origine. Notez que l'ID de modèle déployé est différent de l'ID du modèle.

Étape suivante