Vertex AI 会分配节点以处理在线预测和批量预测。在将自定义训练模型或 AutoML 模型部署到 Endpoint
资源来进行在线预测或在请求批量预测时,可以自定义预测服务要在这些节点中使用的虚拟机类型。您还可以选择配置预测节点以使用 GPU。
机器类型在几个方面有差异:
- 每个节点的虚拟 CPU (vCPU) 数量
- 每个节点的内存量
- 价格
通过选择具有更多计算资源的机器类型,您可以缩短预测的延迟时间或同时处理更多预测请求。
指定计算资源的位置
在线预测
如果您想使用自定义训练的模型或 AutoML 表格模型执行在线预测,则必须在将 Model
资源作为 DeployedModel
部署到 Endpoint
时指定机器类型。对于其他类型的 AutoML 模型,Vertex AI 会自动配置机器类型。
在 DeployedModel
的 dedicatedResources.machineSpec
字段中指定机器类型(以及可选的 GPU 配置)。
了解如何部署每种模型类型:
批量预测
如果要从自定义模型或 AutoML 表格模型获取批量预测,则必须在创建 BatchPredictionJob
资源时指定机器类型。在 BatchPredictionJob
的 dedicatedResources.machineSpec
字段中指定机器类型(以及可选的 GPU 配置)。
机器类型
下表比较了可用于在自定义训练的模型和 AutoML 表格模型上执行预测的机器类型:
E2 系列
名称 | vCPU | 内存 (GB) |
---|---|---|
e2-standard-2 |
2 | 8 |
e2-standard-4 |
4 | 16 |
e2-standard-8 |
8 | 32 |
e2-standard-16 |
16 | 64 |
e2-standard-32 |
32 | 128 |
e2-highmem-2 |
2 | 16 |
e2-highmem-4 |
4 | 32 |
e2-highmem-8 |
8 | 64 |
e2-highmem-16 |
16 | 128 |
e2-highcpu-2 |
2 | 2 |
e2-highcpu-4 |
4 | 4 |
e2-highcpu-8 |
8 | 8 |
e2-highcpu-16 |
16 | 16 |
e2-highcpu-32 |
32 | 32 |
N1 系列
名称 | vCPU | 内存 (GB) |
---|---|---|
n1-standard-2 |
2 | 7.5 |
n1-standard-4 |
4 | 15 |
n1-standard-8 |
8 | 30 |
n1-standard-16 |
16 | 60 |
n1-standard-32 |
32 | 120 |
n1-highmem-2 |
2 | 13 |
n1-highmem-4 |
4 | 26 |
n1-highmem-8 |
8 | 52 |
n1-highmem-16 |
16 | 104 |
n1-highmem-32 |
32 | 208 |
n1-highcpu-4 |
4 | 3.6 |
n1-highcpu-8 |
8 | 7.2 |
n1-highcpu-16 |
16 | 14.4 |
n1-highcpu-32 |
32 | 28.8 |
N2 系列
名称 | vCPU | 内存 (GB) |
---|---|---|
n2-standard-2 |
2 | 8 |
n2-standard-4 |
4 | 16 |
n2-standard-8 |
8 | 32 |
n2-standard-16 |
16 | 64 |
n2-standard-32 |
32 | 128 |
n2-standard-48 |
48 | 192 |
n2-standard-64 |
64 | 256 |
n2-standard-80 |
80 | 320 |
n2-standard-96 |
96 | 384 |
n2-standard-128 |
128 | 512 |
n2-highmem-2 |
2 | 16 |
n2-highmem-4 |
4 | 32 |
n2-highmem-8 |
8 | 64 |
n2-highmem-16 |
16 | 128 |
n2-highmem-32 |
32 | 256 |
n2-highmem-48 |
48 | 384 |
n2-highmem-64 |
64 | 512 |
n2-highmem-80 |
80 | 640 |
n2-highmem-96 |
96 | 768 |
n2-highmem-128 |
128 | 864 |
n2-highcpu-2 |
2 | 2 |
n2-highcpu-4 |
4 | 4 |
n2-highcpu-8 |
8 | 8 |
n2-highcpu-16 |
16 | 16 |
n2-highcpu-32 |
32 | 32 |
n2-highcpu-48 |
48 | 48 |
n2-highcpu-64 |
64 | 64 |
n2-highcpu-80 |
80 | 80 |
n2-highcpu-96 |
96 | 96 |
N2D 系列
名称 | vCPU | 内存 (GB) |
---|---|---|
n2d-standard-2 |
2 | 8 |
n2d-standard-4 |
4 | 16 |
n2d-standard-8 |
8 | 32 |
n2d-standard-16 |
16 | 64 |
n2d-standard-32 |
32 | 128 |
n2d-standard-48 |
48 | 192 |
n2d-standard-64 |
64 | 256 |
n2d-standard-80 |
80 | 320 |
n2d-standard-96 |
96 | 384 |
n2d-standard-128 |
128 | 512 |
n2d-standard-224 |
224 | 896 |
n2d-highmem-2 |
2 | 16 |
n2d-highmem-4 |
4 | 32 |
n2d-highmem-8 |
8 | 64 |
n2d-highmem-16 |
16 | 128 |
n2d-highmem-32 |
32 | 256 |
n2d-highmem-48 |
48 | 384 |
n2d-highmem-64 |
64 | 512 |
n2d-highmem-80 |
80 | 640 |
n2d-highmem-96 |
96 | 768 |
n2d-highcpu-2 |
2 | 2 |
n2d-highcpu-4 |
4 | 4 |
n2d-highcpu-8 |
8 | 8 |
n2d-highcpu-16 |
16 | 16 |
n2d-highcpu-32 |
32 | 32 |
n2d-highcpu-48 |
48 | 48 |
n2d-highcpu-64 |
64 | 64 |
n2d-highcpu-80 |
80 | 80 |
n2d-highcpu-96 |
96 | 96 |
n2d-highcpu-128 |
128 | 128 |
n2d-highcpu-224 |
224 | 224 |
C2 系列
名称 | vCPU | 内存 (GB) |
---|---|---|
c2-standard-4 |
4 | 16 |
c2-standard-8 |
8 | 32 |
c2-standard-16 |
16 | 64 |
c2-standard-30 |
30 | 120 |
c2-standard-60 |
60 | 240 |
C2D 系列
名称 | vCPU | 内存 (GB) |
---|---|---|
c2d-standard-2 |
2 | 8 |
c2d-standard-4 |
4 | 16 |
c2d-standard-8 |
8 | 32 |
c2d-standard-16 |
16 | 64 |
c2d-standard-32 |
32 | 128 |
c2d-standard-56 |
56 | 224 |
c2d-standard-112 |
112 | 448 |
c2d-highcpu-2 |
2 | 4 |
c2d-highcpu-4 |
4 | 8 |
c2d-highcpu-8 |
8 | 16 |
c2d-highcpu-16 |
16 | 32 |
c2d-highcpu-32 |
32 | 64 |
c2d-highcpu-56 |
56 | 112 |
c2d-highcpu-112 |
112 | 224 |
c2d-highmem-2 |
2 | 16 |
c2d-highmem-4 |
4 | 32 |
c2d-highmem-8 |
8 | 64 |
c2d-highmem-16 |
16 | 128 |
c2d-highmem-32 |
32 | 256 |
c2d-highmem-56 |
56 | 448 |
c2d-highmem-112 |
112 | 896 |
C3 系列
名称 | vCPU | 内存 (GB) |
---|---|---|
c3-highcpu-4 |
4 | 8 |
c3-highcpu-8 |
8 | 16 |
c3-highcpu-22 |
22 | 44 |
c3-highcpu-44 |
44 | 88 |
c3-highcpu-88 |
88 | 176 |
c3-highcpu-176 |
176 | 352 |
A2 系列
名称 | vCPU | 内存 (GB) | GPU (NVIDIA A100) |
---|---|---|---|
a2-highgpu-1g |
12 | 85 | 1 (A100 40GB) |
a2-highgpu-2g |
24 | 170 | 2 (A100 40GB) |
a2-highgpu-4g |
48 | 340 | 4 (A100 40GB) |
a2-highgpu-8g |
96 | 680 | 8 (A100 40GB) |
a2-megagpu-16g |
96 | 1360 | 16 (A100 40GB) |
a2-ultragpu-1g |
12 | 170 | 1 (A100 80GB) |
a2-ultragpu-2g |
24 | 340 | 2 (A100 80GB) |
a2-ultragpu-4g |
48 | 680 | 4 (A100 80GB) |
a2-ultragpu-8g |
96 | 1360 | 8 (A100 80GB) |
A3 系列
名称 | vCPU | 内存 (GB) | GPU (NVIDIA H100) |
---|---|---|---|
a3-highgpu-8g |
208 | 1872 | 8 (H100 80GB) |
G2 系列
名称 | vCPU | 内存 (GB) | GPU (NVIDIA L4) |
---|---|---|---|
g2-standard-4 |
4 | 16 | 1 |
g2-standard-8 |
8 | 32 | 1 |
g2-standard-12 |
12 | 48 | 1 |
g2-standard-16 |
16 | 64 | 1 |
g2-standard-24 |
24 | 96 | 2 |
g2-standard-32 |
32 | 128 | 1 |
g2-standard-48 |
48 | 192 | 4 |
g2-standard-96 |
96 | 384 | 8 |
了解每种机器类型的价格。如需详细了解这些机器类型的详细规范,请参阅有关机器类型的 Compute Engine 文档。
找到理想的机器类型
在线预测
如需找到适合您的应用场景的理想机器类型,我们建议您在多种机器类型上加载模型并衡量延迟时间、费用、并发和吞吐量等特征。
一种方法是在多种机器类型上运行此笔记本,并比较结果以找到最适合您的机器类型。
Vertex AI 会在每个副本上预留大约 1 个 vCPU,用于运行系统进程。这意味着在单核机器类型上运行笔记本与使用 2 核机器类型执行预测相当。
在考虑预测费用时,请注意,虽然较大的机器费用较高,但它们可以降低总费用,因为处理相同的工作负载需要较少的副本。这对于 GPU 来说尤其明显,因为每小时的费用往往更高,但两者都可以降低延迟和总费用。
批量预测
如需了解详情,请参阅选择机器类型和副本数量。
可选 GPU 加速器
某些配置(例如 A2 系列和 G2 系列)内置了固定数量的 GPU。
其他配置(如 N1 系列)允许您选择添加 GPU 以加快每个预测节点的速度。
如需添加可选的 GPU 加速器,您必须考虑以下几个要求:
- 只有当您的
Model
资源基于 TensorFlow SavedModel,或者当您使用旨在充分利用 GPU 的自定义容器时,您才能使用 GPU。您不能将 GPU 用于 scikit-learn 或 XGBoost 模型。 - 每种 GPU 类型的可用性因模型使用的区域而异。了解哪些区域提供了哪些类型的 GPU。
- 您只能为
DeployedModel
资源或BatchPredictionJob
使用一种 GPU 类型,您可以添加的 GPU 数量有一定限制,具体取决于您在使用的机器类型。下表介绍了这些限制。
下表展示了可用于在线预测的可选 GPU 以及可用于每种 Compute Engine 机器类型的每种 GPU 类型的数量:
每种机器类型的有效 GPU 数量 | |||||
---|---|---|---|---|---|
机器类型 | NVIDIA Tesla P100 | NVIDIA Tesla V100 | NVIDIA Tesla P4 | NVIDIA Tesla T4 | |
n1-standard-2 |
1、2、4 | 1、2、4、8 | 1、2、4 | 1、2、4 | |
n1-standard-4 |
1、2、4 | 1、2、4、8 | 1、2、4 | 1、2、4 | |
n1-standard-8 |
1、2、4 | 1、2、4、8 | 1、2、4 | 1、2、4 | |
n1-standard-16 |
1、2、4 | 2、4、8 | 1、2、4 | 1、2、4 | |
n1-standard-32 |
2、4 | 4、8 | 2、4 | 2、4 | |
n1-highmem-2 |
1、2、4 | 1、2、4、8 | 1、2、4 | 1、2、4 | |
n1-highmem-4 |
1、2、4 | 1、2、4、8 | 1、2、4 | 1、2、4 | |
n1-highmem-8 |
1、2、4 | 1、2、4、8 | 1、2、4 | 1、2、4 | |
n1-highmem-16 |
1、2、4 | 2、4、8 | 1、2、4 | 1、2、4 | |
n1-highmem-32 |
2、4 | 4、8 | 2、4 | 2、4 | |
n1-highcpu-2 |
1、2、4 | 1、2、4、8 | 1、2、4 | 1、2、4 | |
n1-highcpu-4 |
1、2、4 | 1、2、4、8 | 1、2、4 | 1、2、4 | |
n1-highcpu-8 |
1、2、4 | 1、2、4、8 | 1、2、4 | 1、2、4 | |
n1-highcpu-16 |
1、2、4 | 2、4、8 | 1、2、4 | 1、2、4 | |
n1-highcpu-32 |
2、4 | 4、8 | 2、4 | 2、4 |
可选 GPU 会产生额外费用。