オンライン サービング

オンライン サービングを使用すると、少量のエンティティの特徴値を低レイテンシで処理できます。リクエストごとに、単一のエンティティ タイプからの特徴値のみを処理できます。Vertex AI Feature Store(レガシー)は、各特徴の最新の値(null 以外)のみを返します。

通常は、オンライン予測のためにデプロイされたモデルに特徴値を提供するためにオンライン サービングを使用します。たとえば、自転車シェアリングの会社を保有しており、特定のユーザーがレンタルする自転車のレンタル時間を予測することを必要としているとします。ユーザーからのリアルタイムの入力と featurestore からのデータを計算に入れて、オンライン予測を実行できます。そうすることで、リソースの割り当てをリアルタイムに判断できます。

Null 値

オンライン サービングの結果で特徴の最新の値が Null の場合、Vertex AI Feature Store(レガシー)は、最新の Null 以外の値を返します。前に値がない場合、Vertex AI Feature Store(レガシー)は Null を返します。

始める前に

呼び出し先の featurestore にオンライン ストアがあることを確認します(ノード数が 0 よりも大きくすることを確認します)。そうでないと、オンライン サービング リクエストはエラーを返します。詳細については、featurestore の管理をご覧ください。

単一エンティティからの値を処理する

特定のエンティティ タイプに関する単一のエンティティからの特徴値を処理します。

REST

エンティティから特徴値を取得するには、featurestores.entityTypes.readFeatureValues メソッドを使用して POST リクエストを送信します。

次のサンプルでは、特定のエンティティの 2 つの異なる特徴の最新値を取得します。なお、ids フィールドには、特徴 ID ではなく ["*"] を指定することで、エンティティのすべての特徴を選択できます。

リクエストのデータを使用する前に、次のように置き換えます。

  • LOCATION_ID: featurestore が作成されるリージョン。例: us-central1
  • PROJECT_ID: 実際のプロジェクト ID
  • FEATURESTORE_ID: featurestore の ID。
  • ENTITY_TYPE_ID: エンティティ タイプの ID。
  • ENTITY_ID: 特徴値を取得するエンティティの ID。
  • FEATURE_ID: 値を取得する特徴の ID。

HTTP メソッドと URL:

POST https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID:readFeatureValues

リクエストの本文(JSON):

{
  "entityId": "ENTITY_ID",
  "featureSelector": {
    "idMatcher": {
      "ids": ["FEATURE_ID_1", "FEATURE_ID_2"]
    }
  }
}

リクエストを送信するには、次のいずれかのオプションを選択します。

curl

リクエスト本文を request.json という名前のファイルに保存して、次のコマンドを実行します。

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID:readFeatureValues"

PowerShell

リクエスト本文を request.json という名前のファイルに保存して、次のコマンドを実行します。

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID:readFeatureValues" | Select-Object -Expand Content

次のような JSON レスポンスが返されます。

{
  "header": {
    "entityType": "projects/PROJECT_NUMBER/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID",
    "featureDescriptors": [
      {
        "id": "FEATURE_ID_1"
      },
      {
        "id": "FEATURE_ID_2"
      }
    ]
  },
  "entityView": {
    "entityId": "ENTITY_ID",
    "data": [
      {
        "value": {
          "VALUE_TYPE_1": "FEATURE_VALUE_1",
          "metadata": {
            "generateTime": "2019-10-28T15:38:10Z"
          }
        }
      },
      {
        "value": {
          "VALUE_TYPE_2": "FEATURE_VALUE_2",
          "metadata": {
            "generateTime": "2019-10-28T15:38:10Z"
          }
        }
      }
    ]
  }
}

Python

Vertex AI SDK for Python のインストールまたは更新の方法については、Vertex AI SDK for Python をインストールするをご覧ください。 詳細については、Python API リファレンス ドキュメントをご覧ください。

from typing import List, Union

from google.cloud import aiplatform


def read_feature_values_sample(
    project: str,
    location: str,
    entity_type_id: str,
    featurestore_id: str,
    entity_ids: Union[str, List[str]],
    feature_ids: Union[str, List[str]] = "*",
):

    aiplatform.init(project=project, location=location)

    my_entity_type = aiplatform.featurestore.EntityType(
        entity_type_name=entity_type_id, featurestore_id=featurestore_id
    )

    my_dataframe = my_entity_type.read(entity_ids=entity_ids, feature_ids=feature_ids)

    return my_dataframe

Java

このサンプルを試す前に、Vertex AI クイックスタート: クライアント ライブラリの使用にある Java の設定手順を完了してください。詳細については、Vertex AI Java API のリファレンス ドキュメントをご覧ください。

Vertex AI に対する認証を行うには、アプリケーションのデフォルト認証情報を設定します。詳細については、ローカル開発環境の認証を設定するをご覧ください。


import com.google.cloud.aiplatform.v1.EntityTypeName;
import com.google.cloud.aiplatform.v1.FeatureSelector;
import com.google.cloud.aiplatform.v1.FeaturestoreOnlineServingServiceClient;
import com.google.cloud.aiplatform.v1.FeaturestoreOnlineServingServiceSettings;
import com.google.cloud.aiplatform.v1.IdMatcher;
import com.google.cloud.aiplatform.v1.ReadFeatureValuesRequest;
import com.google.cloud.aiplatform.v1.ReadFeatureValuesResponse;
import java.io.IOException;
import java.util.Arrays;
import java.util.List;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeoutException;

public class ReadFeatureValuesSample {

  public static void main(String[] args)
      throws IOException, InterruptedException, ExecutionException, TimeoutException {
    // TODO(developer): Replace these variables before running the sample.
    String project = "YOUR_PROJECT_ID";
    // Feature Store ID
    String featurestoreId = "YOUR_FEATURESTORE_ID";
    // Entity Type ID
    String entityTypeId = "YOUR_ENTITY_TYPE_ID";
    // Entity ID
    String entityId = "YOUR_ENTITY_ID";
    // Features to read with batch or online serving.
    List<String> featureSelectorIds = Arrays.asList("title", "genres", "average_rating");
    String location = "us-central1";
    String endpoint = "us-central1-aiplatform.googleapis.com:443";
    int timeout = 300;

    readFeatureValuesSample(
        project,
        featurestoreId,
        entityTypeId,
        entityId,
        featureSelectorIds,
        location,
        endpoint,
        timeout);
  }

  /*
   * Reads Feature values of a specific entity of an EntityType.
   * See: https://cloud.google.com/vertex-ai/docs/featurestore/serving-online
   */
  public static void readFeatureValuesSample(
      String project,
      String featurestoreId,
      String entityTypeId,
      String entityId,
      List<String> featureSelectorIds,
      String location,
      String endpoint,
      int timeout)
      throws IOException, InterruptedException, ExecutionException, TimeoutException {
    FeaturestoreOnlineServingServiceSettings featurestoreOnlineServiceSettings =
        FeaturestoreOnlineServingServiceSettings.newBuilder().setEndpoint(endpoint).build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (FeaturestoreOnlineServingServiceClient featurestoreOnlineServiceClient =
        FeaturestoreOnlineServingServiceClient.create(featurestoreOnlineServiceSettings)) {
      ReadFeatureValuesRequest readFeatureValuesRequest =
          ReadFeatureValuesRequest.newBuilder()
              .setEntityType(
                  EntityTypeName.of(project, location, featurestoreId, entityTypeId).toString())
              .setEntityId(entityId)
              .setFeatureSelector(
                  FeatureSelector.newBuilder()
                      .setIdMatcher(IdMatcher.newBuilder().addAllIds(featureSelectorIds)))
              .build();

      ReadFeatureValuesResponse readFeatureValuesResponse =
          featurestoreOnlineServiceClient.readFeatureValues(readFeatureValuesRequest);
      System.out.println("Read Feature Values Response" + readFeatureValuesResponse);
    }
  }
}

Node.js

このサンプルを試す前に、Vertex AI クイックスタート: クライアント ライブラリの使用にある Node.js の設定手順を完了してください。詳細については、Vertex AI Node.js API のリファレンス ドキュメントをご覧ください。

Vertex AI に対する認証を行うには、アプリケーションのデフォルト認証情報を設定します。詳細については、ローカル開発環境の認証を設定するをご覧ください。

/**
 * TODO(developer): Uncomment these variables before running the sample.\
 * (Not necessary if passing values as arguments)
 */

// const project = 'YOUR_PROJECT_ID';
// const featurestoreId = 'YOUR_FEATURESTORE_ID';
// const entityTypeId = 'YOUR_ENTITY_TYPE_ID';
// const entityId = 'ENTITY_ID_TO_SERVE';
// const location = 'YOUR_PROJECT_LOCATION';
// const apiEndpoint = 'YOUR_API_ENDPOINT';
// const timeout = <TIMEOUT_IN_MILLI_SECONDS>;

// Imports the Google Cloud Featurestore Service Client library
const {FeaturestoreOnlineServingServiceClient} =
  require('@google-cloud/aiplatform').v1;

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: apiEndpoint,
};

// Instantiates a client
const featurestoreOnlineServingServiceClient =
  new FeaturestoreOnlineServingServiceClient(clientOptions);

async function readFeatureValues() {
  // Configure the entityType resource
  const entityType = `projects/${project}/locations/${location}/featurestores/${featurestoreId}/entityTypes/${entityTypeId}`;

  const featureSelector = {
    idMatcher: {
      ids: ['age', 'gender', 'liked_genres'],
    },
  };

  const request = {
    entityType: entityType,
    entityId: entityId,
    featureSelector: featureSelector,
  };

  // Read Feature Values Request
  const [response] =
    await featurestoreOnlineServingServiceClient.readFeatureValues(request, {
      timeout: Number(timeout),
    });

  console.log('Read feature values response');
  console.log('Raw response:');
  console.log(JSON.stringify(response, null, 2));
}
readFeatureValues();

複数エンティティからの値を処理する

特定のエンティティ タイプに関する 1 つ以上のエンティティからの特徴値を処理します。パフォーマンスを向上させるには、readFeatureValues メソッドに並列リクエストを送信する代わりに streamingReadFeatureValues メソッドを使用します。

REST

複数のエンティティから特徴値を取得するには、featurestores.entityTypes.streamingReadFeatureValues メソッドを使用して POST リクエストを送信します。

次のサンプルでは、2 つの異なるエンティティの 2 つの異なる特徴の最新値を取得します。なお、ids フィールドには、特徴 ID ではなく ["*"] を指定することで、エンティティのすべての特徴を選択できます。

リクエストのデータを使用する前に、次のように置き換えます。

  • LOCATION_ID: featurestore が作成されるリージョン。例: us-central1
  • PROJECT_ID: 実際のプロジェクト ID
  • FEATURESTORE_ID: featurestore の ID。
  • ENTITY_TYPE_ID: エンティティ タイプの ID。
  • ENTITY_ID: 特徴値を取得するエンティティの ID。
  • FEATURE_ID: 値を取得する特徴の ID。

HTTP メソッドと URL:

POST https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID:streamingReadFeatureValues

リクエストの本文(JSON):

{
  "entityIds": ["ENTITY_ID_1", "ENTITY_ID_2"],
  "featureSelector": {
    "idMatcher": {
      "ids": ["FEATURE_ID_1", "FEATURE_ID_2"]
    }
  }
}

リクエストを送信するには、次のいずれかのオプションを選択します。

curl

リクエスト本文を request.json という名前のファイルに保存して、次のコマンドを実行します。

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID:streamingReadFeatureValues"

PowerShell

リクエスト本文を request.json という名前のファイルに保存して、次のコマンドを実行します。

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID:streamingReadFeatureValues" | Select-Object -Expand Content

次のような JSON レスポンスが返されます。

[{
  "header": {
    "entityType": "projects/PROJECT_NUMBER/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID",
    "featureDescriptors": [
      {
        "id": "FEATURE_ID_1"
      },
      {
        "id": "FEATURE_ID_2"
      }
    ]
  }
},
{
  "entityView": {
    "entityId": "ENTITY_ID_1",
    "data": [
      {
        "value": {
          "VALUE_TYPE_1": "FEATURE_VALUE_A",
          "metadata": {
            "generateTime": "2019-10-28T15:38:10Z"
          }
        }
      },
      {
        "value": {
          "VALUE_TYPE_2": "FEATURE_VALUE_B",
          "metadata": {
            "generateTime": "2019-10-28T15:38:10Z"
          }
        }
      }
    ]
  }
},
{
  "entityView": {
    "entityId": "ENTITY_ID_2",
    "data": [
      {
        "value": {
          "VALUE_TYPE_1": "FEATURE_VALUE_C",
          "metadata": {
            "generateTime": "2019-10-28T21:21:37Z"
          }
        }
      },
      {
        "value": {
          "VALUE_TYPE_2": "FEATURE_VALUE_D",
          "metadata": {
            "generateTime": "2019-10-28T21:21:37Z"
          }
        }
      }
    ]
  }
}]

その他の言語

次の Vertex AI クライアント ライブラリを使用してインストールすると、Vertex AI API を呼び出すことができます。Cloud クライアント ライブラリによって、サポートされている各言語の自然な規則やスタイルが使用され、デベロッパーに快適な利用環境が提供されます。

次のステップ