API를 사용하여 데이터 세트 만들기

머신러닝 모델을 만들려면 우선 학습할 대표 데이터 모음이 있어야 합니다. API(또는 Console)를 사용하여 빈 데이터 세트를 만들고 데이터 세트에 데이터를 가져옵니다. 데이터를 가져온 후 적절히 수정하여 모델 학습을 시작할 수 있습니다.

데이터 세트 만들기

다음 샘플을 사용하여 데이터의 데이터 세트를 만듭니다.

아래와 같은 데이터 유형을 선택하세요.

이미지

데이터 세트에 지정하는 데이터 세트 스키마는 이미지, 테이블, 텍스트, 동영상 등 학습할 데이터 유형에 따라 다릅니다. 단일 이미지 데이터 세트는 분류 또는 객체 감지 등 여러 목표에 사용할 수 있습니다.

REST 및 명령줄

요청 데이터를 사용하기 전에 다음을 바꿉니다.

  • LOCATION: 데이터 세트가 저장될 리전입니다. 데이터 세트 리소스를 지원하는 리전이어야 합니다. 예를 들면 us-central1입니다.
  • PROJECT: 프로젝트 ID 또는 프로젝트 번호입니다.
  • DATASET_NAME: 데이터 세트의 이름입니다.
  • PROJECT_NUMBER: 프로젝트의 프로젝트 번호입니다(응답에 표시됨).

HTTP 메서드 및 URL:

POST https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/datasets

JSON 요청 본문:

{
  "display_name": "DATASET_NAME",
  "metadata_schema_uri": "gs://google-cloud-aiplatform/schema/dataset/metadata/image_1.0.0.yaml"
}

요청을 보내려면 다음 옵션 중 하나를 선택합니다.

curl

요청 본문을 request.json 파일에 저장하고 다음 명령어를 실행합니다.

curl -X POST \
-H "Authorization: Bearer "$(gcloud auth application-default print-access-token) \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/datasets"

PowerShell

요청 본문을 request.json 파일에 저장하고 다음 명령어를 실행합니다.

$cred = gcloud auth application-default print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/datasets" | Select-Object -Expand Content

다음과 비슷한 출력이 표시됩니다. 응답의 OPERATION_ID를 사용하여 작업 상태를 확인할 수 있습니다.

{
  "name": "projects/PROJECT_NUMBER/locations/LOCATION/datasets/DATASET_ID/operations/OPERATION_ID",
  "metadata": {
    "@type": "type.googleapis.com/google.cloud.aiplatform.v1.CreateDatasetOperationMetadata",
    "genericMetadata": {
      "createTime": "2020-07-07T21:27:35.964882Z",
      "updateTime": "2020-07-07T21:27:35.964882Z"
    }
  }
}

자바


import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.aiplatform.v1.CreateDatasetOperationMetadata;
import com.google.cloud.aiplatform.v1.Dataset;
import com.google.cloud.aiplatform.v1.DatasetServiceClient;
import com.google.cloud.aiplatform.v1.DatasetServiceSettings;
import com.google.cloud.aiplatform.v1.LocationName;
import java.io.IOException;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;

public class CreateDatasetImageSample {

  public static void main(String[] args)
      throws IOException, InterruptedException, ExecutionException, TimeoutException {
    // TODO(developer): Replace these variables before running the sample.
    String project = "YOUR_PROJECT_ID";
    String datasetDisplayName = "YOUR_DATASET_DISPLAY_NAME";
    createDatasetImageSample(project, datasetDisplayName);
  }

  static void createDatasetImageSample(String project, String datasetDisplayName)
      throws IOException, InterruptedException, ExecutionException, TimeoutException {
    DatasetServiceSettings datasetServiceSettings =
        DatasetServiceSettings.newBuilder()
            .setEndpoint("us-central1-aiplatform.googleapis.com:443")
            .build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (DatasetServiceClient datasetServiceClient =
        DatasetServiceClient.create(datasetServiceSettings)) {
      String location = "us-central1";
      String metadataSchemaUri =
          "gs://google-cloud-aiplatform/schema/dataset/metadata/image_1.0.0.yaml";
      LocationName locationName = LocationName.of(project, location);
      Dataset dataset =
          Dataset.newBuilder()
              .setDisplayName(datasetDisplayName)
              .setMetadataSchemaUri(metadataSchemaUri)
              .build();

      OperationFuture<Dataset, CreateDatasetOperationMetadata> datasetFuture =
          datasetServiceClient.createDatasetAsync(locationName, dataset);
      System.out.format("Operation name: %s\n", datasetFuture.getInitialFuture().get().getName());
      System.out.println("Waiting for operation to finish...");
      Dataset datasetResponse = datasetFuture.get(120, TimeUnit.SECONDS);

      System.out.println("Create Image Dataset Response");
      System.out.format("Name: %s\n", datasetResponse.getName());
      System.out.format("Display Name: %s\n", datasetResponse.getDisplayName());
      System.out.format("Metadata Schema Uri: %s\n", datasetResponse.getMetadataSchemaUri());
      System.out.format("Metadata: %s\n", datasetResponse.getMetadata());
      System.out.format("Create Time: %s\n", datasetResponse.getCreateTime());
      System.out.format("Update Time: %s\n", datasetResponse.getUpdateTime());
      System.out.format("Labels: %s\n", datasetResponse.getLabelsMap());
    }
  }
}

Node.js

/**
 * TODO(developer): Uncomment these variables before running the sample.\
 * (Not necessary if passing values as arguments)
 */

// const datasetDisplayName = "YOUR_DATASTE_DISPLAY_NAME";
// const project = 'YOUR_PROJECT_ID';
// const location = 'YOUR_PROJECT_LOCATION';

// Imports the Google Cloud Dataset Service Client library
const {DatasetServiceClient} = require('@google-cloud/aiplatform');

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: 'us-central1-aiplatform.googleapis.com',
};

// Instantiates a client
const datasetServiceClient = new DatasetServiceClient(clientOptions);

async function createDatasetImage() {
  // Configure the parent resource
  const parent = `projects/${project}/locations/${location}`;
  // Configure the dataset resource
  const dataset = {
    displayName: datasetDisplayName,
    metadataSchemaUri:
      'gs://google-cloud-aiplatform/schema/dataset/metadata/image_1.0.0.yaml',
  };
  const request = {
    parent,
    dataset,
  };

  // Create Dataset Request
  const [response] = await datasetServiceClient.createDataset(request);
  console.log(`Long running operation: ${response.name}`);

  // Wait for operation to complete
  await response.promise();
  const result = response.result;

  console.log('Create dataset image response');
  console.log(`Name : ${result.name}`);
  console.log(`Display name : ${result.displayName}`);
  console.log(`Metadata schema uri : ${result.metadataSchemaUri}`);
  console.log(`Metadata : ${JSON.stringify(result.metadata)}`);
  console.log(`Labels : ${JSON.stringify(result.labels)}`);
}
createDatasetImage();

Python

다음 샘플에서는 Python용 Vertex SDK를 사용하여 데이터 세트를 만들고 데이터를 가져옵니다. 이 샘플 코드를 실행하는 경우 이 가이드의 데이터 가져오기 섹션을 건너뛸 수 있습니다.

이 특정 샘플은 단일 라벨 분류에 사용되는 데이터를 가져옵니다. 모델의 목표가 다른 경우 코드를 조정해야 합니다.

def create_and_import_dataset_image_sample(
    project: str,
    location: str,
    display_name: str,
    src_uris: Union[str, List[str]],
    sync: bool = True,
):
    aiplatform.init(project=project, location=location)

    ds = aiplatform.ImageDataset.create(
        display_name=display_name,
        gcs_source=src_uris,
        import_schema_uri=aiplatform.schema.dataset.ioformat.image.single_label_classification,
        sync=sync,
    )

    ds.wait()

    print(ds.display_name)
    print(ds.resource_name)
    return ds

테이블 형식

데이터 세트를 만들면 해당 데이터 세트를 데이터 소스와도 연결할 수 있습니다. 데이터 세트를 만드는 데 필요한 코드는 학습 데이터가 Cloud Storage 또는 BigQuery에 있는지에 따라 다릅니다. 데이터 소스가 다른 프로젝트에 있는 경우 필수 권한 설정이 필요합니다.

Cloud Storage에서 데이터가 포함된 데이터 세트 만들기

REST 및 명령줄

datasets.create 메서드를 사용하여 데이터 세트를 만듭니다.

요청 데이터를 사용하기 전에 다음을 바꿉니다.

  • LOCATION: 데이터 세트가 저장될 리전입니다. 데이터 세트 리소스를 지원하는 리전이어야 합니다. 예를 들면 us-central1입니다.
  • PROJECT: 프로젝트 ID 또는 프로젝트 번호입니다.
  • DATASET_NAME: 데이터 세트의 표시 이름입니다.
  • METADATA_SCHEMA_URI: 목표의 스키마 파일에 대한 URI입니다.
    • 분류: gs://google-cloud-aiplatform/schema/dataset/metadata/tabular_1.0.0.yaml
    • 예측: gs://google-cloud-aiplatform/schema/dataset/metadata/time_series_1.0.0.yaml
    • 회귀: gs://google-cloud-aiplatform/schema/dataset/metadata/tabular_1.0.0.yaml
  • URI: 학습 데이터가 포함된 Cloud Storage 버킷의 경로(URI)입니다. 두 개 이상 있을 수 있습니다. 각 URI의 형식은 다음과 같습니다.
    gs://GCSprojectId/bucketName/fileName
    
  • PROJECT_NUMBER: 프로젝트의 프로젝트 번호입니다(응답에 표시됨).

HTTP 메서드 및 URL:

POST https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/datasets

JSON 요청 본문:

{
  "display_name": "DATASET_NAME",
  "metadata_schema_uri": "METADATA_SCHEMA_URI",
  "metadata": {
    "input_config": {
      "gcs_source": {
        "uri": [URI1, URI2, ...]
      }
    }
  }
}

요청을 보내려면 다음 옵션 중 하나를 선택합니다.

curl

요청 본문을 request.json 파일에 저장하고 다음 명령어를 실행합니다.

curl -X POST \
-H "Authorization: Bearer "$(gcloud auth application-default print-access-token) \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/datasets"

PowerShell

요청 본문을 request.json 파일에 저장하고 다음 명령어를 실행합니다.

$cred = gcloud auth application-default print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/datasets" | Select-Object -Expand Content

다음과 비슷한 JSON 응답이 표시됩니다.

{
  "name": "projects/PROJECT_NUMBER/locations/LOCATION/datasets/DATASET_ID/operations/OPERATION_ID",
  "metadata": {
    "@type": "type.googleapis.com/google.cloud.aiplatform.v1.CreateDatasetOperationMetadata",
    "genericMetadata": {
      "createTime": "2020-07-07T21:27:35.964882Z",
      "updateTime": "2020-07-07T21:27:35.964882Z"
    }
}

자바


import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.aiplatform.v1.CreateDatasetOperationMetadata;
import com.google.cloud.aiplatform.v1.Dataset;
import com.google.cloud.aiplatform.v1.DatasetServiceClient;
import com.google.cloud.aiplatform.v1.DatasetServiceSettings;
import com.google.cloud.aiplatform.v1.LocationName;
import com.google.protobuf.Value;
import com.google.protobuf.util.JsonFormat;
import java.io.IOException;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;

public class CreateDatasetTabularGcsSample {

  public static void main(String[] args)
      throws InterruptedException, ExecutionException, TimeoutException, IOException {
    // TODO(developer): Replace these variables before running the sample.
    String project = "YOUR_PROJECT_ID";
    String datasetDisplayName = "YOUR_DATASET_DISPLAY_NAME";
    String gcsSourceUri = "gs://YOUR_GCS_SOURCE_BUCKET/path_to_your_gcs_table/file.csv";
    ;
    createDatasetTableGcs(project, datasetDisplayName, gcsSourceUri);
  }

  static void createDatasetTableGcs(String project, String datasetDisplayName, String gcsSourceUri)
      throws IOException, ExecutionException, InterruptedException, TimeoutException {
    DatasetServiceSettings settings =
        DatasetServiceSettings.newBuilder()
            .setEndpoint("us-central1-aiplatform.googleapis.com:443")
            .build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (DatasetServiceClient datasetServiceClient = DatasetServiceClient.create(settings)) {
      String location = "us-central1";
      String metadataSchemaUri =
          "gs://google-cloud-aiplatform/schema/dataset/metadata/tables_1.0.0.yaml";
      LocationName locationName = LocationName.of(project, location);

      String jsonString =
          "{\"input_config\": {\"gcs_source\": {\"uri\": [\"" + gcsSourceUri + "\"]}}}";
      Value.Builder metaData = Value.newBuilder();
      JsonFormat.parser().merge(jsonString, metaData);

      Dataset dataset =
          Dataset.newBuilder()
              .setDisplayName(datasetDisplayName)
              .setMetadataSchemaUri(metadataSchemaUri)
              .setMetadata(metaData)
              .build();

      OperationFuture<Dataset, CreateDatasetOperationMetadata> datasetFuture =
          datasetServiceClient.createDatasetAsync(locationName, dataset);
      System.out.format("Operation name: %s\n", datasetFuture.getInitialFuture().get().getName());
      System.out.println("Waiting for operation to finish...");
      Dataset datasetResponse = datasetFuture.get(300, TimeUnit.SECONDS);

      System.out.println("Create Dataset Table GCS sample");
      System.out.format("Name: %s\n", datasetResponse.getName());
      System.out.format("Display Name: %s\n", datasetResponse.getDisplayName());
      System.out.format("Metadata Schema Uri: %s\n", datasetResponse.getMetadataSchemaUri());
      System.out.format("Metadata: %s\n", datasetResponse.getMetadata());
    }
  }
}

Node.js

/**
 * TODO(developer): Uncomment these variables before running the sample.\
 * (Not necessary if passing values as arguments)
 */

// const datasetDisplayName = 'YOUR_DATASET_DISPLAY_NAME';
// const gcsSourceUri = 'YOUR_GCS_SOURCE_URI';
// const project = 'YOUR_PROJECT_ID';
// const location = 'YOUR_PROJECT_LOCATION';

// Imports the Google Cloud Dataset Service Client library
const {DatasetServiceClient} = require('@google-cloud/aiplatform');

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: 'us-central1-aiplatform.googleapis.com',
};

// Instantiates a client
const datasetServiceClient = new DatasetServiceClient(clientOptions);

async function createDatasetTabularGcs() {
  // Configure the parent resource
  const parent = `projects/${project}/locations/${location}`;
  const metadata = {
    structValue: {
      fields: {
        inputConfig: {
          structValue: {
            fields: {
              gcsSource: {
                structValue: {
                  fields: {
                    uri: {
                      listValue: {
                        values: [{stringValue: gcsSourceUri}],
                      },
                    },
                  },
                },
              },
            },
          },
        },
      },
    },
  };
  // Configure the dataset resource
  const dataset = {
    displayName: datasetDisplayName,
    metadataSchemaUri:
      'gs://google-cloud-aiplatform/schema/dataset/metadata/tabular_1.0.0.yaml',
    metadata: metadata,
  };
  const request = {
    parent,
    dataset,
  };

  // Create dataset request
  const [response] = await datasetServiceClient.createDataset(request);
  console.log(`Long running operation : ${response.name}`);

  // Wait for operation to complete
  await response.promise();
  const result = response.result;

  console.log('Create dataset tabular gcs response');
  console.log(`\tName : ${result.name}`);
  console.log(`\tDisplay name : ${result.displayName}`);
  console.log(`\tMetadata schema uri : ${result.metadataSchemaUri}`);
  console.log(`\tMetadata : ${JSON.stringify(result.metadata)}`);
}
createDatasetTabularGcs();

Python

def create_and_import_dataset_tabular_gcs_sample(
    display_name: str, project: str, location: str, gcs_source: Union[str, List[str]],
):

    aiplatform.init(project=project, location=location)

    dataset = aiplatform.TabularDataset.create(
        display_name=display_name, gcs_source=gcs_source,
    )

    dataset.wait()

    print(f'\tDataset: "{dataset.display_name}"')
    print(f'\tname: "{dataset.resource_name}"')

BigQuery에서 데이터가 있는 데이터 세트 만들기

REST 및 명령줄

datasets.create 메서드를 사용하여 데이터 세트를 만듭니다.

요청 데이터를 사용하기 전에 다음을 바꿉니다.

  • LOCATION: 데이터 세트가 저장될 리전입니다. 데이터 세트 리소스를 지원하는 리전이어야 합니다. 예를 들면 us-central1입니다.
  • PROJECT: 프로젝트 ID 또는 프로젝트 번호입니다.
  • DATASET_NAME: 데이터 세트의 표시 이름입니다.
  • METADATA_SCHEMA_URI: 목표의 스키마 파일에 대한 URI입니다.
    • 분류: gs://google-cloud-aiplatform/schema/dataset/metadata/tabular_1.0.0.yaml
    • 예측: gs://google-cloud-aiplatform/schema/dataset/metadata/time_series_1.0.0.yaml
    • 회귀: gs://google-cloud-aiplatform/schema/dataset/metadata/tabular_1.0.0.yaml
  • URI: 학습 데이터가 포함된 BigQuery 테이블의 경로입니다. 다음 안내를 따라 양식을 작성하세요.
    bq://bqprojectId.bqDatasetId.bqTableId
    
  • PROJECT_NUMBER: 프로젝트의 프로젝트 번호입니다(응답에 표시됨).

HTTP 메서드 및 URL:

POST https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/datasets

JSON 요청 본문:

{
  "display_name": "DATASET_NAME",
  "metadata_schema_uri": "METADATA_SCHEMA_URI",
  "metadata": {
    "input_config": {
      "bigquery_source" :{
        "uri": "URI
      }
    }
  }
}

요청을 보내려면 다음 옵션 중 하나를 선택합니다.

curl

요청 본문을 request.json 파일에 저장하고 다음 명령어를 실행합니다.

curl -X POST \
-H "Authorization: Bearer "$(gcloud auth application-default print-access-token) \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/datasets"

PowerShell

요청 본문을 request.json 파일에 저장하고 다음 명령어를 실행합니다.

$cred = gcloud auth application-default print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/datasets" | Select-Object -Expand Content

다음과 비슷한 JSON 응답이 표시됩니다.

{
  "name": "projects/PROJECT_NUMBER/locations/LOCATION/datasets/DATASET_ID/operations/OPERATION_ID",
  "metadata": {
    "@type": "type.googleapis.com/google.cloud.aiplatform.v1.CreateDatasetOperationMetadata",
    "genericMetadata": {
      "createTime": "2020-07-07T21:27:35.964882Z",
      "updateTime": "2020-07-07T21:27:35.964882Z"
    }
}

자바


import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.aiplatform.v1.CreateDatasetOperationMetadata;
import com.google.cloud.aiplatform.v1.Dataset;
import com.google.cloud.aiplatform.v1.DatasetServiceClient;
import com.google.cloud.aiplatform.v1.DatasetServiceSettings;
import com.google.cloud.aiplatform.v1.LocationName;
import com.google.protobuf.Value;
import com.google.protobuf.util.JsonFormat;
import java.io.IOException;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;

public class CreateDatasetTabularBigquerySample {

  public static void main(String[] args)
      throws InterruptedException, ExecutionException, TimeoutException, IOException {
    // TODO(developer): Replace these variables before running the sample.
    String project = "YOUR_PROJECT_ID";
    String bigqueryDisplayName = "YOUR_DATASET_DISPLAY_NAME";
    String bigqueryUri =
        "bq://YOUR_GOOGLE_CLOUD_PROJECT_ID.BIGQUERY_DATASET_ID.BIGQUERY_TABLE_OR_VIEW_ID";
    createDatasetTableBigquery(project, bigqueryDisplayName, bigqueryUri);
  }

  static void createDatasetTableBigquery(
      String project, String bigqueryDisplayName, String bigqueryUri)
      throws IOException, ExecutionException, InterruptedException, TimeoutException {
    DatasetServiceSettings settings =
        DatasetServiceSettings.newBuilder()
            .setEndpoint("us-central1-aiplatform.googleapis.com:443")
            .build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (DatasetServiceClient datasetServiceClient = DatasetServiceClient.create(settings)) {
      String location = "us-central1";
      String metadataSchemaUri =
          "gs://google-cloud-aiplatform/schema/dataset/metadata/tables_1.0.0.yaml";
      LocationName locationName = LocationName.of(project, location);

      String jsonString =
          "{\"input_config\": {\"bigquery_source\": {\"uri\": \"" + bigqueryUri + "\"}}}";
      Value.Builder metaData = Value.newBuilder();
      JsonFormat.parser().merge(jsonString, metaData);

      Dataset dataset =
          Dataset.newBuilder()
              .setDisplayName(bigqueryDisplayName)
              .setMetadataSchemaUri(metadataSchemaUri)
              .setMetadata(metaData)
              .build();

      OperationFuture<Dataset, CreateDatasetOperationMetadata> datasetFuture =
          datasetServiceClient.createDatasetAsync(locationName, dataset);
      System.out.format("Operation name: %s\n", datasetFuture.getInitialFuture().get().getName());
      System.out.println("Waiting for operation to finish...");
      Dataset datasetResponse = datasetFuture.get(300, TimeUnit.SECONDS);

      System.out.println("Create Dataset Table Bigquery sample");
      System.out.format("Name: %s\n", datasetResponse.getName());
      System.out.format("Display Name: %s\n", datasetResponse.getDisplayName());
      System.out.format("Metadata Schema Uri: %s\n", datasetResponse.getMetadataSchemaUri());
      System.out.format("Metadata: %s\n", datasetResponse.getMetadata());
    }
  }
}

Node.js

/**
 * TODO(developer): Uncomment these variables before running the sample.\
 * (Not necessary if passing values as arguments)
 */

// const datasetDisplayName = 'YOUR_DATASET_DISPLAY_NAME';
// const bigquerySourceUri = 'YOUR_BIGQUERY_SOURCE_URI';
// const project = 'YOUR_PROJECT_ID';
// const location = 'YOUR_PROJECT_LOCATION';

// Imports the Google Cloud Dataset Service Client library
const {DatasetServiceClient} = require('@google-cloud/aiplatform');

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: 'us-central1-aiplatform.googleapis.com',
};

// Instantiates a client
const datasetServiceClient = new DatasetServiceClient(clientOptions);

async function createDatasetTabularBigquery() {
  // Configure the parent resource
  const parent = `projects/${project}/locations/${location}`;
  const metadata = {
    structValue: {
      fields: {
        inputConfig: {
          structValue: {
            fields: {
              bigquerySource: {
                structValue: {
                  fields: {
                    uri: {
                      listValue: {
                        values: [{stringValue: bigquerySourceUri}],
                      },
                    },
                  },
                },
              },
            },
          },
        },
      },
    },
  };
  // Configure the dataset resource
  const dataset = {
    displayName: datasetDisplayName,
    metadataSchemaUri:
      'gs://google-cloud-aiplatform/schema/dataset/metadata/tabular_1.0.0.yaml',
    metadata: metadata,
  };
  const request = {
    parent,
    dataset,
  };

  // Create dataset request
  const [response] = await datasetServiceClient.createDataset(request);
  console.log(`Long running operation : ${response.name}`);

  // Wait for operation to complete
  await response.promise();
  const result = response.result;

  console.log('Create dataset tabular bigquery response');
  console.log(`\tName : ${result.name}`);
  console.log(`\tDisplay name : ${result.displayName}`);
  console.log(`\tMetadata schema uri : ${result.metadataSchemaUri}`);
  console.log(`\tMetadata : ${JSON.stringify(result.metadata)}`);
}
createDatasetTabularBigquery();

Python

def create_and_import_dataset_tabular_bigquery_sample(
    display_name: str, project: str, location: str, bigquery_source: str,
):

    aiplatform.init(project=project, location=location)

    dataset = aiplatform.TabularDataset.create(
        display_name=display_name, bigquery_source=bigquery_source,
    )

    dataset.wait()

    print(f'\tDataset: "{dataset.display_name}"')
    print(f'\tname: "{dataset.resource_name}"')

텍스트

REST 및 명령줄

요청 데이터를 사용하기 전에 다음을 바꿉니다.

  • LOCATION: 데이터 세트가 저장될 리전입니다. 데이터 세트 리소스를 지원하는 리전이어야 합니다. 예를 들면 us-central1입니다.
  • PROJECT_ID: 프로젝트 ID입니다.
  • DATASET_NAME: 데이터 세트의 이름입니다.

HTTP 메서드 및 URL:

POST https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/datasets

JSON 요청 본문:

{
  "display_name": "DATASET_NAME",
  "metadata_schema_uri": "gs://google-cloud-aiplatform/schema/dataset/metadata/text_1.0.0.yaml"
}

요청을 보내려면 다음 옵션 중 하나를 선택합니다.

curl

요청 본문을 request.json 파일에 저장하고 다음 명령어를 실행합니다.

curl -X POST \
-H "Authorization: Bearer "$(gcloud auth application-default print-access-token) \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/datasets"

PowerShell

요청 본문을 request.json 파일에 저장하고 다음 명령어를 실행합니다.

$cred = gcloud auth application-default print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/datasets" | Select-Object -Expand Content

다음과 비슷한 출력이 표시됩니다. 응답의 OPERATION_ID를 사용하여 작업 상태를 확인할 수 있습니다.

{
  "name": "projects/PROJECT_NUMBER/locations/LOCATION/datasets/DATASET_ID/operations/OPERATION_ID",
  "metadata": {
    "@type": "type.googleapis.com/google.cloud.aiplatform.v1.CreateDatasetOperationMetadata",
    "genericMetadata": {
      "createTime": "2020-07-07T21:27:35.964882Z",
      "updateTime": "2020-07-07T21:27:35.964882Z"
    }
  }
}

자바


import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.aiplatform.v1.CreateDatasetOperationMetadata;
import com.google.cloud.aiplatform.v1.Dataset;
import com.google.cloud.aiplatform.v1.DatasetServiceClient;
import com.google.cloud.aiplatform.v1.DatasetServiceSettings;
import com.google.cloud.aiplatform.v1.LocationName;
import java.io.IOException;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;

public class CreateDatasetTextSample {

  public static void main(String[] args)
      throws IOException, InterruptedException, ExecutionException, TimeoutException {
    // TODO(developer): Replace these variables before running the sample.
    String project = "YOUR_PROJECT_ID";
    String datasetDisplayName = "YOUR_DATASET_DISPLAY_NAME";

    createDatasetTextSample(project, datasetDisplayName);
  }

  static void createDatasetTextSample(String project, String datasetDisplayName)
      throws IOException, InterruptedException, ExecutionException, TimeoutException {
    DatasetServiceSettings datasetServiceSettings =
        DatasetServiceSettings.newBuilder()
            .setEndpoint("us-central1-aiplatform.googleapis.com:443")
            .build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (DatasetServiceClient datasetServiceClient =
        DatasetServiceClient.create(datasetServiceSettings)) {
      String location = "us-central1";
      String metadataSchemaUri =
          "gs://google-cloud-aiplatform/schema/dataset/metadata/text_1.0.0.yaml";

      LocationName locationName = LocationName.of(project, location);
      Dataset dataset =
          Dataset.newBuilder()
              .setDisplayName(datasetDisplayName)
              .setMetadataSchemaUri(metadataSchemaUri)
              .build();

      OperationFuture<Dataset, CreateDatasetOperationMetadata> datasetFuture =
          datasetServiceClient.createDatasetAsync(locationName, dataset);
      System.out.format("Operation name: %s\n", datasetFuture.getInitialFuture().get().getName());

      System.out.println("Waiting for operation to finish...");
      Dataset datasetResponse = datasetFuture.get(180, TimeUnit.SECONDS);

      System.out.println("Create Text Dataset Response");
      System.out.format("\tName: %s\n", datasetResponse.getName());
      System.out.format("\tDisplay Name: %s\n", datasetResponse.getDisplayName());
      System.out.format("\tMetadata Schema Uri: %s\n", datasetResponse.getMetadataSchemaUri());
      System.out.format("\tMetadata: %s\n", datasetResponse.getMetadata());
      System.out.format("\tCreate Time: %s\n", datasetResponse.getCreateTime());
      System.out.format("\tUpdate Time: %s\n", datasetResponse.getUpdateTime());
      System.out.format("\tLabels: %s\n", datasetResponse.getLabelsMap());
    }
  }
}

Node.js

/**
 * TODO(developer): Uncomment these variables before running the sample.\
 * (Not necessary if passing values as arguments)
 */

// const datasetDisplayName = "YOUR_DATASTE_DISPLAY_NAME";
// const project = 'YOUR_PROJECT_ID';
// const location = 'YOUR_PROJECT_LOCATION';

// Imports the Google Cloud Dataset Service Client library
const {DatasetServiceClient} = require('@google-cloud/aiplatform');

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: 'us-central1-aiplatform.googleapis.com',
};

// Instantiates a client
const datasetServiceClient = new DatasetServiceClient(clientOptions);

async function createDatasetText() {
  // Configure the parent resource
  const parent = `projects/${project}/locations/${location}`;
  // Configure the dataset resource
  const dataset = {
    displayName: datasetDisplayName,
    metadataSchemaUri:
      'gs://google-cloud-aiplatform/schema/dataset/metadata/text_1.0.0.yaml',
  };
  const request = {
    parent,
    dataset,
  };

  // Create Dataset Request
  const [response] = await datasetServiceClient.createDataset(request);
  console.log(`Long running operation: ${response.name}`);

  // Wait for operation to complete
  await response.promise();
  const result = response.result;

  console.log('Create dataset text response');
  console.log(`Name : ${result.name}`);
  console.log(`Display name : ${result.displayName}`);
  console.log(`Metadata schema uri : ${result.metadataSchemaUri}`);
  console.log(`Metadata : ${JSON.stringify(result.metadata)}`);
  console.log(`Labels : ${JSON.stringify(result.labels)}`);
}
createDatasetText();

Python

다음 샘플에서는 Python용 Vertex SDK를 사용하여 데이터 세트를 만들고 데이터를 가져옵니다. 이 샘플 코드를 실행하는 경우 이 가이드의 데이터 가져오기 섹션을 건너뛸 수 있습니다.

이 특정 샘플은 단일 라벨 분류에 사용되는 데이터를 가져옵니다. 모델의 목표가 다른 경우 코드를 조정해야 합니다.

def create_and_import_dataset_text_sample(
    project: str,
    location: str,
    display_name: str,
    src_uris: Union[str, List[str]],
    sync: bool = True,
):
    aiplatform.init(project=project, location=location)

    ds = aiplatform.TextDataset.create(
        display_name=display_name,
        gcs_source=src_uris,
        import_schema_uri=aiplatform.schema.dataset.ioformat.text.single_label_classification,
        sync=sync,
    )

    ds.wait()

    print(ds.display_name)
    print(ds.resource_name)
    return ds

동영상

아래에서 목표에 대한 탭을 선택합니다.

REST 및 명령줄

요청 데이터를 사용하기 전에 다음을 바꿉니다.

  • LOCATION: 데이터 세트가 저장될 리전입니다. 데이터 세트 리소스를 지원하는 리전이어야 합니다. 예를 들면 us-central1입니다.
  • PROJECT: 프로젝트 ID 또는 프로젝트 번호입니다.
  • DATASET_NAME: 데이터 세트의 이름입니다.
  • PROJECT_NUMBER: 프로젝트의 프로젝트 번호입니다(응답에 표시됨).

HTTP 메서드 및 URL:

POST https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/datasets

JSON 요청 본문:

{
  "display_name": "DATASET_NAME",
  "metadata_schema_uri": "gs://google-cloud-aiplatform/schema/dataset/metadata/video_1.0.0.yaml"
}

요청을 보내려면 다음 옵션 중 하나를 선택합니다.

curl

요청 본문을 request.json 파일에 저장하고 다음 명령어를 실행합니다.

curl -X POST \
-H "Authorization: Bearer "$(gcloud auth application-default print-access-token) \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/datasets"

PowerShell

요청 본문을 request.json 파일에 저장하고 다음 명령어를 실행합니다.

$cred = gcloud auth application-default print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/datasets" | Select-Object -Expand Content

다음과 비슷한 출력이 표시됩니다. 응답의 OPERATION_ID를 사용하여 작업 상태를 확인할 수 있습니다.

{
  "name": "projects/PROJECT_NUMBER/locations/LOCATION/operations/OPERATION_ID",
  "metadata": {
    "@type": "type.googleapis.com/google.cloud.aiplatform.v1.CreateDatasetOperationMetadata",
    "genericMetadata": {
      "createTime": "2020-07-07T21:27:35.964882Z",
      "updateTime": "2020-07-07T21:27:35.964882Z"
    }
  }
}

자바


import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.aiplatform.v1.CreateDatasetOperationMetadata;
import com.google.cloud.aiplatform.v1.Dataset;
import com.google.cloud.aiplatform.v1.DatasetServiceClient;
import com.google.cloud.aiplatform.v1.DatasetServiceSettings;
import com.google.cloud.aiplatform.v1.LocationName;
import java.io.IOException;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;

public class CreateDatasetVideoSample {

  public static void main(String[] args)
      throws IOException, InterruptedException, ExecutionException, TimeoutException {
    // TODO(developer): Replace these variables before running the sample.
    String project = "YOUR_PROJECT_ID";
    String datasetVideoDisplayName = "YOUR_DATASET_VIDEO_DISPLAY_NAME";
    createDatasetSample(datasetVideoDisplayName, project);
  }

  static void createDatasetSample(String datasetVideoDisplayName, String project)
      throws IOException, InterruptedException, ExecutionException, TimeoutException {
    DatasetServiceSettings datasetServiceSettings =
        DatasetServiceSettings.newBuilder()
            .setEndpoint("us-central1-aiplatform.googleapis.com:443")
            .build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (DatasetServiceClient datasetServiceClient =
        DatasetServiceClient.create(datasetServiceSettings)) {
      String location = "us-central1";
      String metadataSchemaUri =
          "gs://google-cloud-aiplatform/schema/dataset/metadata/video_1.0.0.yaml";
      LocationName locationName = LocationName.of(project, location);
      Dataset dataset =
          Dataset.newBuilder()
              .setDisplayName(datasetVideoDisplayName)
              .setMetadataSchemaUri(metadataSchemaUri)
              .build();

      OperationFuture<Dataset, CreateDatasetOperationMetadata> datasetFuture =
          datasetServiceClient.createDatasetAsync(locationName, dataset);
      System.out.format("Operation name: %s\n", datasetFuture.getInitialFuture().get().getName());
      System.out.println("Waiting for operation to finish...");
      Dataset datasetResponse = datasetFuture.get(300, TimeUnit.SECONDS);

      System.out.println("Create Dataset Video Response");
      System.out.format("Name: %s\n", datasetResponse.getName());
      System.out.format("Display Name: %s\n", datasetResponse.getDisplayName());
      System.out.format("Metadata Schema Uri: %s\n", datasetResponse.getMetadataSchemaUri());
      System.out.format("Metadata: %s\n", datasetResponse.getMetadata());
      System.out.format("Create Time: %s\n", datasetResponse.getCreateTime());
      System.out.format("Update Time: %s\n", datasetResponse.getUpdateTime());
      System.out.format("Labels: %s\n", datasetResponse.getLabelsMap());
    }
  }
}

Node.js

/**
 * TODO(developer): Uncomment these variables before running the sample.\
 * (Not necessary if passing values as arguments)
 */

// const datasetDisplayName = "YOUR_DATASTE_DISPLAY_NAME";
// const project = 'YOUR_PROJECT_ID';
// const location = 'YOUR_PROJECT_LOCATION';

// Imports the Google Cloud Dataset Service Client library
const {DatasetServiceClient} = require('@google-cloud/aiplatform');

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: 'us-central1-aiplatform.googleapis.com',
};

// Instantiates a client
const datasetServiceClient = new DatasetServiceClient(clientOptions);

async function createDatasetVideo() {
  // Configure the parent resource
  const parent = `projects/${project}/locations/${location}`;
  // Configure the dataset resource
  const dataset = {
    displayName: datasetDisplayName,
    metadataSchemaUri:
      'gs://google-cloud-aiplatform/schema/dataset/metadata/video_1.0.0.yaml',
  };
  const request = {
    parent,
    dataset,
  };

  // Create Dataset Request
  const [response] = await datasetServiceClient.createDataset(request);
  console.log(`Long running operation: ${response.name}`);

  // Wait for operation to complete
  await response.promise();
  const result = response.result;

  console.log('Create dataset video response');
  console.log(`Name : ${result.name}`);
  console.log(`Display name : ${result.displayName}`);
  console.log(`Metadata schema uri : ${result.metadataSchemaUri}`);
  console.log(`Metadata : ${JSON.stringify(result.metadata)}`);
  console.log(`Labels : ${JSON.stringify(result.labels)}`);
}
createDatasetVideo();

Python

다음 샘플에서는 Python용 Vertex SDK를 사용하여 데이터 세트를 만들고 데이터를 가져옵니다. 이 샘플 코드를 실행하는 경우 이 가이드의 데이터 가져오기 섹션을 건너뛸 수 있습니다.

이 특정 샘플은 분류에 사용되는 데이터를 가져옵니다. 모델의 목표가 다른 경우 코드를 조정해야 합니다.

def create_and_import_dataset_video_sample(
    project: str,
    location: str,
    display_name: str,
    src_uris: Union[str, List[str]],
    sync: bool = True,
):
    aiplatform.init(project=project, location=location)

    ds = aiplatform.VideoDataset.create(
        display_name=display_name,
        gcs_source=src_uris,
        import_schema_uri=aiplatform.schema.dataset.ioformat.video.classification,
        sync=sync,
    )

    ds.wait()

    print(ds.display_name)
    print(ds.resource_name)
    return ds

데이터 가져오기

이미지, 텍스트, 동영상 데이터의 경우 빈 데이터 세트를 만든 후 데이터 세트로 데이터를 가져올 수 있습니다. Python용 Vertex SDK를 사용하여 데이터 세트를 만든 경우 데이터 세트를 만들 때 이미 데이터를 가져왔을 수 있습니다. 이 경우 이 섹션을 건너뛸 수 있습니다.

테이블 형식의 데이터 세트로는 데이터를 가져오지 않습니다. 즉, 데이터가 데이터 세트와 연결되어 있지만 가져오지는 않습니다.

아래와 같은 데이터 유형을 선택하세요.

이미지

데이터 가져올 때 모델의 목표에 따라 특정 스키마를 지정해야 합니다. 이미지 데이터의 경우 다음 모델 목표를 사용할 수 있습니다.

  • 단일 라벨 분류: 이미지에 대해 단일 라벨 주석을 가져옵니다.
  • 다중 라벨 분류: 이미지에 대해 여러 개의 라벨 주석을 가져옵니다.
  • 객체 감지: 이미지에서 키 객체에 대한 경계 상자 및 라벨 주석을 가져옵니다.

아래에서 목표에 대한 탭을 선택합니다.

단일 라벨 분류

REST 및 명령줄

요청 데이터를 사용하기 전에 다음을 바꿉니다.

  • LOCATION: 데이터 세트가 있는 리전입니다. 예를 들면 us-central1입니다.
  • PROJECT_ID: 프로젝트 ID입니다.
  • DATASET_ID: 데이터 세트의 ID입니다.
  • IMPORT_FILE_URI: 모델 학습에 사용할 Cloud Storage에 저장된 데이터 항목을 나열하는 Cloud Storage의 CSV 또는 JSONL 파일 경로입니다. 가져오기 파일 형식과 제한사항에 대한 자세한 내용은 이미지 데이터 준비를 참조하세요.

HTTP 메서드 및 URL:

POST https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/datasets/DATASET_ID:import

JSON 요청 본문:

{
  "import_configs": [
    {
      "gcs_source": {
        "uris": "IMPORT_FILE_URI"
      },
     "import_schema_uri" : "gs://google-cloud-aiplatform/schema/dataset/ioformat/image_classification_single_label_io_format_1.0.0.yaml"
    }
  ]
}

요청을 보내려면 다음 옵션 중 하나를 선택합니다.

curl

요청 본문을 request.json 파일에 저장하고 다음 명령어를 실행합니다.

curl -X POST \
-H "Authorization: Bearer "$(gcloud auth application-default print-access-token) \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/datasets/DATASET_ID:import"

PowerShell

요청 본문을 request.json 파일에 저장하고 다음 명령어를 실행합니다.

$cred = gcloud auth application-default print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/datasets/DATASET_ID:import" | Select-Object -Expand Content

다음과 비슷한 출력이 표시됩니다. 응답의 OPERATION_ID를 사용하여 작업 상태를 확인할 수 있습니다.

{
  "name": "projects/PROJECT_NUMBER/locations/LOCATION/datasets/DATASET_ID/operations/OPERATION_ID",
  "metadata": {
    "@type": "type.googleapis.com/google.cloud.aiplatform.v1.ImportDataOperationMetadata",
    "genericMetadata": {
      "createTime": "2020-07-08T20:32:02.543801Z",
      "updateTime": "2020-07-08T20:32:02.543801Z"
    }
  }
}

자바


import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.aiplatform.v1.DatasetName;
import com.google.cloud.aiplatform.v1.DatasetServiceClient;
import com.google.cloud.aiplatform.v1.DatasetServiceSettings;
import com.google.cloud.aiplatform.v1.GcsSource;
import com.google.cloud.aiplatform.v1.ImportDataConfig;
import com.google.cloud.aiplatform.v1.ImportDataOperationMetadata;
import com.google.cloud.aiplatform.v1.ImportDataResponse;
import java.io.IOException;
import java.util.Collections;
import java.util.List;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;

public class ImportDataImageClassificationSample {

  public static void main(String[] args)
      throws IOException, InterruptedException, ExecutionException, TimeoutException {
    // TODO(developer): Replace these variables before running the sample.
    String project = "YOUR_PROJECT_ID";
    String datasetId = "YOUR_DATASET_ID";
    String gcsSourceUri =
        "gs://YOUR_GCS_SOURCE_BUCKET/path_to_your_image_source/[file.csv/file.jsonl]";
    importDataImageClassificationSample(project, datasetId, gcsSourceUri);
  }

  static void importDataImageClassificationSample(
      String project, String datasetId, String gcsSourceUri)
      throws IOException, InterruptedException, ExecutionException, TimeoutException {
    DatasetServiceSettings datasetServiceSettings =
        DatasetServiceSettings.newBuilder()
            .setEndpoint("us-central1-aiplatform.googleapis.com:443")
            .build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (DatasetServiceClient datasetServiceClient =
        DatasetServiceClient.create(datasetServiceSettings)) {
      String location = "us-central1";
      String importSchemaUri =
          "gs://google-cloud-aiplatform/schema/dataset/ioformat/"
              + "image_classification_single_label_io_format_1.0.0.yaml";

      GcsSource.Builder gcsSource = GcsSource.newBuilder();
      gcsSource.addUris(gcsSourceUri);
      DatasetName datasetName = DatasetName.of(project, location, datasetId);

      List<ImportDataConfig> importDataConfigList =
          Collections.singletonList(
              ImportDataConfig.newBuilder()
                  .setGcsSource(gcsSource)
                  .setImportSchemaUri(importSchemaUri)
                  .build());

      OperationFuture<ImportDataResponse, ImportDataOperationMetadata> importDataResponseFuture =
          datasetServiceClient.importDataAsync(datasetName, importDataConfigList);
      System.out.format(
          "Operation name: %s\n", importDataResponseFuture.getInitialFuture().get().getName());
      System.out.println("Waiting for operation to finish...");
      ImportDataResponse importDataResponse = importDataResponseFuture.get(300, TimeUnit.SECONDS);

      System.out.format(
          "Import Data Image Classification Response: %s\n", importDataResponse.toString());
    }
  }
}

Node.js

/**
 * TODO(developer): Uncomment these variables before running the sample.\
 * (Not necessary if passing values as arguments)
 */

// const datasetId = "YOUR_DATASET_ID";
// const gcsSourceUri = "YOUR_GCS_SOURCE_URI";
// eg. "gs://<your-gcs-bucket>/<import_source_path>/[file.csv/file.jsonl]"
// const project = "YOUR_PROJECT_ID";
// const location = 'YOUR_PROJECT_LOCATION';

// Imports the Google Cloud Dataset Service Client library
const {DatasetServiceClient} = require('@google-cloud/aiplatform');

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: 'us-central1-aiplatform.googleapis.com',
};
const datasetServiceClient = new DatasetServiceClient(clientOptions);

async function importDataImageClassification() {
  const name = datasetServiceClient.datasetPath(project, location, datasetId);
  // Here we use only one import config with one source
  const importConfigs = [
    {
      gcsSource: {uris: [gcsSourceUri]},
      importSchemaUri:
        'gs://google-cloud-aiplatform/schema/dataset/ioformat/image_classification_single_label_io_format_1.0.0.yaml',
    },
  ];
  const request = {
    name,
    importConfigs,
  };

  // Create Import Data Request
  const [response] = await datasetServiceClient.importData(request);
  console.log(`Long running operation: ${response.name}`);

  // Wait for operation to complete
  const [importDataResponse] = await response.promise();

  console.log(
    `Import data image classification response : \
      ${JSON.stringify(importDataResponse)}`
  );
}
importDataImageClassification();

Python

def image_dataset_import_data_sample(
    project: str, location: str, src_uris: list, import_schema_uri: str, dataset_id: str
):
    aiplatform.init(project=project, location=location)

    ds = aiplatform.ImageDataset(dataset_id)

    ds = ds.import_data(
        gcs_source=src_uris, import_schema_uri=import_schema_uri, sync=True
    )

    print(ds.display_name)
    print(ds.name)
    print(ds.resource_name)
    return ds

멀티 라벨 분류

REST 및 명령줄

요청 데이터를 사용하기 전에 다음을 바꿉니다.

  • LOCATION: 데이터 세트가 있는 리전입니다. 예를 들면 us-central1입니다.
  • PROJECT_ID: 프로젝트 ID입니다.
  • DATASET_ID: 데이터 세트의 ID입니다.
  • IMPORT_FILE_URI: 모델 학습에 사용할 Cloud Storage에 저장된 데이터 항목을 나열하는 Cloud Storage의 CSV 또는 JSONL 파일 경로입니다. 가져오기 파일 형식과 제한사항에 대한 자세한 내용은 이미지 데이터 준비를 참조하세요.

HTTP 메서드 및 URL:

POST https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/datasets/DATASET_ID:import

JSON 요청 본문:

{
  "import_configs": [
    {
      "gcs_source": {
        "uris": "IMPORT_FILE_URI"
      },
     "import_schema_uri" : "gs://google-cloud-aiplatform/schema/dataset/ioformat/image_classification_multi_label_io_format_1.0.0.yaml"
    }
  ]
}

요청을 보내려면 다음 옵션 중 하나를 선택합니다.

curl

요청 본문을 request.json 파일에 저장하고 다음 명령어를 실행합니다.

curl -X POST \
-H "Authorization: Bearer "$(gcloud auth application-default print-access-token) \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/datasets/DATASET_ID:import"

PowerShell

요청 본문을 request.json 파일에 저장하고 다음 명령어를 실행합니다.

$cred = gcloud auth application-default print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/datasets/DATASET_ID:import" | Select-Object -Expand Content

다음과 비슷한 출력이 표시됩니다. 응답의 OPERATION_ID를 사용하여 작업 상태를 확인할 수 있습니다.

{
  "name": "projects/PROJECT_NUMBER/locations/LOCATION/datasets/DATASET_ID/operations/OPERATION_ID",
  "metadata": {
    "@type": "type.googleapis.com/google.cloud.aiplatform.v1.ImportDataOperationMetadata",
    "genericMetadata": {
      "createTime": "2020-07-08T20:32:02.543801Z",
      "updateTime": "2020-07-08T20:32:02.543801Z"
    }
  }
}

Python

def image_dataset_import_data_sample(
    project: str, location: str, src_uris: list, import_schema_uri: str, dataset_id: str
):
    aiplatform.init(project=project, location=location)

    ds = aiplatform.ImageDataset(dataset_id)

    ds = ds.import_data(
        gcs_source=src_uris, import_schema_uri=import_schema_uri, sync=True
    )

    print(ds.display_name)
    print(ds.name)
    print(ds.resource_name)
    return ds

객체 감지

REST 및 명령줄

요청 데이터를 사용하기 전에 다음을 바꿉니다.

  • LOCATION: 데이터 세트가 있는 리전입니다. 예를 들면 us-central1입니다.
  • PROJECT_ID: 프로젝트 ID입니다.
  • DATASET_ID: 데이터 세트의 ID입니다.
  • IMPORT_FILE_URI: 모델 학습에 사용할 Cloud Storage에 저장된 데이터 항목을 나열하는 Cloud Storage의 CSV 또는 JSONL 파일 경로입니다. 가져오기 파일 형식과 제한사항에 대한 자세한 내용은 이미지 데이터 준비를 참조하세요.

HTTP 메서드 및 URL:

POST https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/datasets/DATASET_ID:import

JSON 요청 본문:

{
  "import_configs": [
    {
      "gcs_source": {
        "uris": "IMPORT_FILE_URI"
      },
     "import_schema_uri" : "gs://google-cloud-aiplatform/schema/dataset/ioformat/image_bounding_box_io_format_1.0.0.yaml"
    }
  ]
}

요청을 보내려면 다음 옵션 중 하나를 선택합니다.

curl

요청 본문을 request.json 파일에 저장하고 다음 명령어를 실행합니다.

curl -X POST \
-H "Authorization: Bearer "$(gcloud auth application-default print-access-token) \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/datasets/DATASET_ID:import"

PowerShell

요청 본문을 request.json 파일에 저장하고 다음 명령어를 실행합니다.

$cred = gcloud auth application-default print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/datasets/DATASET_ID:import" | Select-Object -Expand Content

다음과 비슷한 출력이 표시됩니다. 응답의 OPERATION_ID를 사용하여 작업 상태를 확인할 수 있습니다.

{
  "name": "projects/PROJECT_NUMBER/locations/LOCATION/datasets/DATASET_ID/operations/OPERATION_ID",
  "metadata": {
    "@type": "type.googleapis.com/google.cloud.aiplatform.v1.ImportDataOperationMetadata",
    "genericMetadata": {
      "createTime": "2020-07-08T20:32:02.543801Z",
      "updateTime": "2020-07-08T20:32:02.543801Z"
    }
  }
}

자바


import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.aiplatform.v1.DatasetName;
import com.google.cloud.aiplatform.v1.DatasetServiceClient;
import com.google.cloud.aiplatform.v1.DatasetServiceSettings;
import com.google.cloud.aiplatform.v1.GcsSource;
import com.google.cloud.aiplatform.v1.ImportDataConfig;
import com.google.cloud.aiplatform.v1.ImportDataOperationMetadata;
import com.google.cloud.aiplatform.v1.ImportDataResponse;
import java.io.IOException;
import java.util.Collections;
import java.util.List;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;

public class ImportDataImageObjectDetectionSample {

  public static void main(String[] args)
      throws IOException, InterruptedException, ExecutionException, TimeoutException {
    // TODO(developer): Replace these variables before running the sample.
    String project = "YOUR_PROJECT_ID";
    String datasetId = "YOUR_DATASET_ID";
    String gcsSourceUri =
        "gs://YOUR_GCS_SOURCE_BUCKET/path_to_your_image_source/[file.csv/file.jsonl]";
    importDataImageObjectDetectionSample(project, datasetId, gcsSourceUri);
  }

  static void importDataImageObjectDetectionSample(
      String project, String datasetId, String gcsSourceUri)
      throws IOException, InterruptedException, ExecutionException, TimeoutException {
    DatasetServiceSettings datasetServiceSettings =
        DatasetServiceSettings.newBuilder()
            .setEndpoint("us-central1-aiplatform.googleapis.com:443")
            .build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (DatasetServiceClient datasetServiceClient =
        DatasetServiceClient.create(datasetServiceSettings)) {
      String location = "us-central1";
      String importSchemaUri =
          "gs://google-cloud-aiplatform/schema/dataset/ioformat/"
              + "image_bounding_box_io_format_1.0.0.yaml";
      GcsSource.Builder gcsSource = GcsSource.newBuilder();
      gcsSource.addUris(gcsSourceUri);
      DatasetName datasetName = DatasetName.of(project, location, datasetId);

      List<ImportDataConfig> importDataConfigList =
          Collections.singletonList(
              ImportDataConfig.newBuilder()
                  .setGcsSource(gcsSource)
                  .setImportSchemaUri(importSchemaUri)
                  .build());

      OperationFuture<ImportDataResponse, ImportDataOperationMetadata> importDataResponseFuture =
          datasetServiceClient.importDataAsync(datasetName, importDataConfigList);
      System.out.format(
          "Operation name: %s\n", importDataResponseFuture.getInitialFuture().get().getName());
      System.out.println("Waiting for operation to finish...");
      ImportDataResponse importDataResponse = importDataResponseFuture.get(300, TimeUnit.SECONDS);

      System.out.format(
          "Import Data Image Object Detection Response: %s\n", importDataResponse.toString());
    }
  }
}

Node.js

/**
 * TODO(developer): Uncomment these variables before running the sample.\
 * (Not necessary if passing values as arguments)
 */

// const datasetId = "YOUR_DATASET_ID";
// const gcsSourceUri = "YOUR_GCS_SOURCE_URI";
// eg. "gs://<your-gcs-bucket>/<import_source_path>/[file.csv/file.jsonl]"
// const project = "YOUR_PROJECT_ID";
// const location = 'YOUR_PROJECT_LOCATION';

// Imports the Google Cloud Dataset Service Client library
const {DatasetServiceClient} = require('@google-cloud/aiplatform');

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: 'us-central1-aiplatform.googleapis.com',
};
const datasetServiceClient = new DatasetServiceClient(clientOptions);

async function importDataImageObjectDetection() {
  const name = datasetServiceClient.datasetPath(project, location, datasetId);
  // Here we use only one import config with one source
  const importConfigs = [
    {
      gcsSource: {uris: [gcsSourceUri]},
      importSchemaUri:
        'gs://google-cloud-aiplatform/schema/dataset/ioformat/image_bounding_box_io_format_1.0.0.yaml',
    },
  ];
  const request = {
    name,
    importConfigs,
  };

  // Create Import Data Request
  const [response] = await datasetServiceClient.importData(request);
  console.log(`Long running operation : ${response.name}`);

  // Wait for operation to complete
  await response.promise();

  console.log(
    `Import data image object detection response : \
      ${JSON.stringify(response.result)}`
  );
}
importDataImageObjectDetection();

Python

def image_dataset_import_data_sample(
    project: str, location: str, src_uris: list, import_schema_uri: str, dataset_id: str
):
    aiplatform.init(project=project, location=location)

    ds = aiplatform.ImageDataset(dataset_id)

    ds = ds.import_data(
        gcs_source=src_uris, import_schema_uri=import_schema_uri, sync=True
    )

    print(ds.display_name)
    print(ds.name)
    print(ds.resource_name)
    return ds

테이블 형식

텍스트

아래에서 목표에 대한 탭을 선택합니다.

단일 라벨 분류

REST 및 명령줄

요청 데이터를 사용하기 전에 다음을 바꿉니다.

  • LOCATION: 데이터 세트가 저장될 리전입니다. 예를 들면 us-central1입니다.
  • PROJECT_ID: 프로젝트 ID입니다.
  • DATASET_ID: 데이터 세트의 ID입니다.
  • IMPORT_FILE_URI: 모델 학습에 사용할 Cloud Storage에 저장된 데이터 항목을 나열하는 Cloud Storage의 CSV 또는 JSONL 파일 경로입니다. 가져오기 파일 형식과 제한사항에 대한 자세한 내용은 텍스트 데이터 준비를 참조하세요.

HTTP 메서드 및 URL:

POST https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/datasets/DATASET_ID:import

JSON 요청 본문:

{
  "import_configs": [
    {
      "gcs_source": {
        "uris": "IMPORT_FILE_URI"
      },
     "import_schema_uri" : "gs://google-cloud-aiplatform/schema/dataset/ioformat/text_classification_single_label_io_format_1.0.0.yaml"
    }
  ]
}

요청을 보내려면 다음 옵션 중 하나를 선택합니다.

curl

요청 본문을 request.json 파일에 저장하고 다음 명령어를 실행합니다.

curl -X POST \
-H "Authorization: Bearer "$(gcloud auth application-default print-access-token) \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/datasets/DATASET_ID:import"

PowerShell

요청 본문을 request.json 파일에 저장하고 다음 명령어를 실행합니다.

$cred = gcloud auth application-default print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/datasets/DATASET_ID:import" | Select-Object -Expand Content

다음과 비슷한 출력이 표시됩니다. 응답의 OPERATION_ID를 사용하여 작업 상태를 확인할 수 있습니다.

{
  "name": "projects/PROJECT_NUMBER/locations/LOCATION/datasets/DATASET_ID/operations/OPERATION_ID",
  "metadata": {
    "@type": "type.googleapis.com/google.cloud.aiplatform.v1.ImportDataOperationMetadata",
    "genericMetadata": {
      "createTime": "2020-07-08T20:32:02.543801Z",
      "updateTime": "2020-07-08T20:32:02.543801Z"
    }
  }
}

자바


import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.aiplatform.v1.DatasetName;
import com.google.cloud.aiplatform.v1.DatasetServiceClient;
import com.google.cloud.aiplatform.v1.DatasetServiceSettings;
import com.google.cloud.aiplatform.v1.GcsSource;
import com.google.cloud.aiplatform.v1.ImportDataConfig;
import com.google.cloud.aiplatform.v1.ImportDataOperationMetadata;
import com.google.cloud.aiplatform.v1.ImportDataResponse;
import java.io.IOException;
import java.util.Collections;
import java.util.List;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;

public class ImportDataTextClassificationSingleLabelSample {

  public static void main(String[] args)
      throws IOException, InterruptedException, ExecutionException, TimeoutException {
    // TODO(developer): Replace these variables before running the sample.
    String project = "YOUR_PROJECT_ID";
    String datasetId = "YOUR_DATASET_ID";
    String gcsSourceUri =
        "gs://YOUR_GCS_SOURCE_BUCKET/path_to_your_text_source/[file.csv/file.jsonl]";

    importDataTextClassificationSingleLabelSample(project, datasetId, gcsSourceUri);
  }

  static void importDataTextClassificationSingleLabelSample(
      String project, String datasetId, String gcsSourceUri)
      throws IOException, InterruptedException, ExecutionException, TimeoutException {
    DatasetServiceSettings datasetServiceSettings =
        DatasetServiceSettings.newBuilder()
            .setEndpoint("us-central1-aiplatform.googleapis.com:443")
            .build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (DatasetServiceClient datasetServiceClient =
        DatasetServiceClient.create(datasetServiceSettings)) {
      String location = "us-central1";
      String importSchemaUri =
          "gs://google-cloud-aiplatform/schema/dataset/ioformat/"
              + "text_classification_single_label_io_format_1.0.0.yaml";

      GcsSource.Builder gcsSource = GcsSource.newBuilder();
      gcsSource.addUris(gcsSourceUri);
      DatasetName datasetName = DatasetName.of(project, location, datasetId);

      List<ImportDataConfig> importDataConfigList =
          Collections.singletonList(
              ImportDataConfig.newBuilder()
                  .setGcsSource(gcsSource)
                  .setImportSchemaUri(importSchemaUri)
                  .build());

      OperationFuture<ImportDataResponse, ImportDataOperationMetadata> importDataResponseFuture =
          datasetServiceClient.importDataAsync(datasetName, importDataConfigList);
      System.out.format(
          "Operation name: %s\n", importDataResponseFuture.getInitialFuture().get().getName());

      System.out.println("Waiting for operation to finish...");
      ImportDataResponse importDataResponse = importDataResponseFuture.get(300, TimeUnit.SECONDS);
      System.out.format(
          "Import Data Text Classification Response: %s\n", importDataResponse.toString());
    }
  }
}

Node.js

/**
 * TODO(developer): Uncomment these variables before running the sample.\
 * (Not necessary if passing values as arguments)
 */

// const datasetId = "YOUR_DATASET_ID";
// const gcsSourceUri = "YOUR_GCS_SOURCE_URI";
// eg. "gs://<your-gcs-bucket>/<import_source_path>/[file.csv/file.jsonl]"
// const project = "YOUR_PROJECT_ID";
// const location = 'YOUR_PROJECT_LOCATION';

// Imports the Google Cloud Dataset Service Client library
const {DatasetServiceClient} = require('@google-cloud/aiplatform');

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: 'us-central1-aiplatform.googleapis.com',
};
const datasetServiceClient = new DatasetServiceClient(clientOptions);

async function importDataTextClassificationSingleLabel() {
  const name = datasetServiceClient.datasetPath(project, location, datasetId);
  // Here we use only one import config with one source
  const importConfigs = [
    {
      gcsSource: {uris: [gcsSourceUri]},
      importSchemaUri:
        'gs://google-cloud-aiplatform/schema/dataset/ioformat/text_classification_single_label_io_format_1.0.0.yaml',
    },
  ];
  const request = {
    name,
    importConfigs,
  };

  // Import data request
  const [response] = await datasetServiceClient.importData(request);
  console.log(`Long running operation : ${response.name}`);

  // Wait for operation to complete
  const [importDataResponse] = await response.promise();

  console.log(
    `Import data text classification single label response : \
      ${JSON.stringify(importDataResponse.result)}`
  );
}
importDataTextClassificationSingleLabel();

Python

def import_data_text_classification_single_label(
    project: str,
    location: str,
    dataset: str,
    src_uris: Union[str, List[str]],
    sync: bool = True,
):
    aiplatform.init(project=project, location=location)

    ds = aiplatform.TextDataset(dataset)
    ds.import_data(
        gcs_source=src_uris,
        import_schema_uri=aiplatform.schema.dataset.ioformat.text.single_label_classification,
        sync=sync,
    )

    ds.wait()

    print(ds.display_name)
    print(ds.resource_name)
    return ds

멀티 라벨 분류

REST 및 명령줄

요청 데이터를 사용하기 전에 다음을 바꿉니다.

  • LOCATION: 데이터 세트가 저장될 리전입니다. 예를 들면 us-central1입니다.
  • PROJECT_ID: 프로젝트 ID입니다.
  • DATASET_ID: 데이터 세트의 ID입니다.
  • IMPORT_FILE_URI: 모델 학습에 사용할 Cloud Storage에 저장된 데이터 항목을 나열하는 Cloud Storage의 CSV 또는 JSONL 파일 경로입니다. 가져오기 파일 형식과 제한사항에 대한 자세한 내용은 텍스트 데이터 준비를 참조하세요.

HTTP 메서드 및 URL:

POST https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/datasets/DATASET_ID:import

JSON 요청 본문:

{
  "import_configs": [
    {
      "gcs_source": {
        "uris": "IMPORT_FILE_URI"
      },
     "import_schema_uri" : "gs://google-cloud-aiplatform/schema/dataset/ioformat/text_classification_multi_label_io_format_1.0.0.yaml"
    }
  ]
}

요청을 보내려면 다음 옵션 중 하나를 선택합니다.

curl

요청 본문을 request.json 파일에 저장하고 다음 명령어를 실행합니다.

curl -X POST \
-H "Authorization: Bearer "$(gcloud auth application-default print-access-token) \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/datasets/DATASET_ID:import"

PowerShell

요청 본문을 request.json 파일에 저장하고 다음 명령어를 실행합니다.

$cred = gcloud auth application-default print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/datasets/DATASET_ID:import" | Select-Object -Expand Content

다음과 비슷한 출력이 표시됩니다. 응답의 OPERATION_ID를 사용하여 작업 상태를 확인할 수 있습니다.

{
  "name": "projects/PROJECT_NUMBER/locations/LOCATION/datasets/DATASET_ID/operations/OPERATION_ID",
  "metadata": {
    "@type": "type.googleapis.com/google.cloud.aiplatform.v1.ImportDataOperationMetadata",
    "genericMetadata": {
      "createTime": "2020-07-08T20:32:02.543801Z",
      "updateTime": "2020-07-08T20:32:02.543801Z"
    }
  }
}

항목 추출

REST 및 명령줄

요청 데이터를 사용하기 전에 다음을 바꿉니다.

  • LOCATION: 데이터 세트가 저장될 리전입니다. 예를 들면 us-central1입니다.
  • PROJECT_ID: 프로젝트 ID입니다.
  • DATASET_ID: 데이터 세트의 ID입니다.
  • IMPORT_FILE_URI: 모델 학습에 사용할 Cloud Storage에 저장된 데이터 항목을 나열하는 Cloud Storage의 CSV 또는 JSONL 파일 경로입니다. 가져오기 파일 형식과 제한사항에 대한 자세한 내용은 텍스트 데이터 준비를 참조하세요.

HTTP 메서드 및 URL:

POST https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/datasets/DATASET_ID:import

JSON 요청 본문:

{
  "import_configs": [
    {
      "gcs_source": {
        "uris": "IMPORT_FILE_URI"
      },
     "import_schema_uri" : "gs://google-cloud-aiplatform/schema/dataset/ioformat/text_extraction_io_format_1.0.0.yaml"
    }
  ]
}

요청을 보내려면 다음 옵션 중 하나를 선택합니다.

curl

요청 본문을 request.json 파일에 저장하고 다음 명령어를 실행합니다.

curl -X POST \
-H "Authorization: Bearer "$(gcloud auth application-default print-access-token) \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/datasets/DATASET_ID:import"

PowerShell

요청 본문을 request.json 파일에 저장하고 다음 명령어를 실행합니다.

$cred = gcloud auth application-default print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/datasets/DATASET_ID:import" | Select-Object -Expand Content

다음과 비슷한 출력이 표시됩니다. 응답의 OPERATION_ID를 사용하여 작업 상태를 확인할 수 있습니다.

{
  "name": "projects/PROJECT_NUMBER/locations/LOCATION/datasets/DATASET_ID/operations/OPERATION_ID",
  "metadata": {
    "@type": "type.googleapis.com/google.cloud.aiplatform.v1.ImportDataOperationMetadata",
    "genericMetadata": {
      "createTime": "2020-07-08T20:32:02.543801Z",
      "updateTime": "2020-07-08T20:32:02.543801Z"
    }
  }
}

자바


import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.aiplatform.v1.DatasetName;
import com.google.cloud.aiplatform.v1.DatasetServiceClient;
import com.google.cloud.aiplatform.v1.DatasetServiceSettings;
import com.google.cloud.aiplatform.v1.GcsSource;
import com.google.cloud.aiplatform.v1.ImportDataConfig;
import com.google.cloud.aiplatform.v1.ImportDataOperationMetadata;
import com.google.cloud.aiplatform.v1.ImportDataResponse;
import java.io.IOException;
import java.util.Collections;
import java.util.List;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;

public class ImportDataTextEntityExtractionSample {

  public static void main(String[] args)
      throws IOException, InterruptedException, ExecutionException, TimeoutException {
    // TODO(developer): Replace these variables before running the sample.
    String project = "YOUR_PROJECT_ID";
    String datasetId = "YOUR_DATASET_ID";
    String gcsSourceUri = "gs://YOUR_GCS_SOURCE_BUCKET/path_to_your_text_source/[file.jsonl]";

    importDataTextEntityExtractionSample(project, datasetId, gcsSourceUri);
  }

  static void importDataTextEntityExtractionSample(
      String project, String datasetId, String gcsSourceUri)
      throws IOException, InterruptedException, ExecutionException, TimeoutException {
    DatasetServiceSettings datasetServiceSettings =
        DatasetServiceSettings.newBuilder()
            .setEndpoint("us-central1-aiplatform.googleapis.com:443")
            .build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (DatasetServiceClient datasetServiceClient =
        DatasetServiceClient.create(datasetServiceSettings)) {
      String location = "us-central1";
      String importSchemaUri =
          "gs://google-cloud-aiplatform/schema/dataset/ioformat/"
              + "text_extraction_io_format_1.0.0.yaml";

      GcsSource.Builder gcsSource = GcsSource.newBuilder();
      gcsSource.addUris(gcsSourceUri);
      DatasetName datasetName = DatasetName.of(project, location, datasetId);

      List<ImportDataConfig> importDataConfigList =
          Collections.singletonList(
              ImportDataConfig.newBuilder()
                  .setGcsSource(gcsSource)
                  .setImportSchemaUri(importSchemaUri)
                  .build());

      OperationFuture<ImportDataResponse, ImportDataOperationMetadata> importDataResponseFuture =
          datasetServiceClient.importDataAsync(datasetName, importDataConfigList);
      System.out.format(
          "Operation name: %s\n", importDataResponseFuture.getInitialFuture().get().getName());

      System.out.println("Waiting for operation to finish...");
      ImportDataResponse importDataResponse = importDataResponseFuture.get(300, TimeUnit.SECONDS);
      System.out.format(
          "Import Data Text Entity Extraction Response: %s\n", importDataResponse.toString());
    }
  }
}

Node.js

/**
 * TODO(developer): Uncomment these variables before running the sample.\
 */

// const datasetId = "YOUR_DATASET_ID";
// const gcsSourceUri = "YOUR_GCS_SOURCE_URI";
// eg. "gs://<your-gcs-bucket>/<import_source_path>/[file.csv/file.jsonl]"
// const project = "YOUR_PROJECT_ID";
// const location = 'YOUR_PROJECT_LOCATION';

// Imports the Google Cloud Dataset Service Client library
const {DatasetServiceClient} = require('@google-cloud/aiplatform');

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: 'us-central1-aiplatform.googleapis.com',
};
const datasetServiceClient = new DatasetServiceClient(clientOptions);

async function importDataTextEntityExtraction() {
  const name = datasetServiceClient.datasetPath(project, location, datasetId);
  // Here we use only one import config with one source
  const importConfigs = [
    {
      gcsSource: {uris: [gcsSourceUri]},
      importSchemaUri:
        'gs://google-cloud-aiplatform/schema/dataset/ioformat/text_extraction_io_format_1.0.0.yaml',
    },
  ];
  const request = {
    name,
    importConfigs,
  };

  // Import data request
  const [response] = await datasetServiceClient.importData(request);
  console.log(`Long running operation : ${response.name}`);

  // Wait for operation to complete
  const [importDataResponse] = await response.promise();

  console.log(
    `Import data text entity extraction response  : \
      ${JSON.stringify(importDataResponse.result)}`
  );
}
importDataTextEntityExtraction();

Python

def import_data_text_entity_extraction_sample(
    project: str,
    location: str,
    dataset: str,
    src_uris: Union[str, List[str]],
    sync: bool = True,
):
    aiplatform.init(project=project, location=location)

    ds = aiplatform.TextDataset(dataset)
    ds.import_data(
        gcs_source=src_uris,
        import_schema_uri=aiplatform.schema.dataset.ioformat.text.extraction,
        sync=sync,
    )

    ds.wait()

    print(ds.display_name)
    print(ds.resource_name)
    return ds

감정 분석

REST 및 명령줄

요청 데이터를 사용하기 전에 다음을 바꿉니다.

  • LOCATION: 데이터 세트가 저장될 리전입니다. 예를 들면 us-central1입니다.
  • PROJECT_ID: 프로젝트 ID입니다.
  • DATASET_ID: 데이터 세트의 ID입니다.
  • IMPORT_FILE_URI: 모델 학습에 사용할 Cloud Storage에 저장된 데이터 항목을 나열하는 Cloud Storage의 CSV 또는 JSONL 파일 경로입니다. 가져오기 파일 형식과 제한사항에 대한 자세한 내용은 텍스트 데이터 준비를 참조하세요.

HTTP 메서드 및 URL:

POST https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/datasets/DATASET_ID:import

JSON 요청 본문:

{
  "import_configs": [
    {
      "gcs_source": {
        "uris": "IMPORT_FILE_URI"
      },
     "import_schema_uri" : "gs://google-cloud-aiplatform/schema/dataset/ioformat/text_sentiment_io_format_1.0.0.yaml "
    }
  ]
}

요청을 보내려면 다음 옵션 중 하나를 선택합니다.

curl

요청 본문을 request.json 파일에 저장하고 다음 명령어를 실행합니다.

curl -X POST \
-H "Authorization: Bearer "$(gcloud auth application-default print-access-token) \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/datasets/DATASET_ID:import"

PowerShell

요청 본문을 request.json 파일에 저장하고 다음 명령어를 실행합니다.

$cred = gcloud auth application-default print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/datasets/DATASET_ID:import" | Select-Object -Expand Content

다음과 비슷한 출력이 표시됩니다. 응답의 OPERATION_ID를 사용하여 작업 상태를 확인할 수 있습니다.

{
  "name": "projects/PROJECT_NUMBER/locations/LOCATION/datasets/DATASET_ID/operations/OPERATION_ID",
  "metadata": {
    "@type": "type.googleapis.com/google.cloud.aiplatform.v1.ImportDataOperationMetadata",
    "genericMetadata": {
      "createTime": "2020-07-08T20:32:02.543801Z",
      "updateTime": "2020-07-08T20:32:02.543801Z"
    }
  }
}

자바


import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.aiplatform.v1.DatasetName;
import com.google.cloud.aiplatform.v1.DatasetServiceClient;
import com.google.cloud.aiplatform.v1.DatasetServiceSettings;
import com.google.cloud.aiplatform.v1.GcsSource;
import com.google.cloud.aiplatform.v1.ImportDataConfig;
import com.google.cloud.aiplatform.v1.ImportDataOperationMetadata;
import com.google.cloud.aiplatform.v1.ImportDataResponse;
import java.io.IOException;
import java.util.Collections;
import java.util.List;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;

public class ImportDataTextSentimentAnalysisSample {

  public static void main(String[] args)
      throws IOException, InterruptedException, ExecutionException, TimeoutException {
    // TODO(developer): Replace these variables before running the sample.
    String project = "YOUR_PROJECT_ID";
    String datasetId = "YOUR_DATASET_ID";
    String gcsSourceUri =
        "gs://YOUR_GCS_SOURCE_BUCKET/path_to_your_text_source/[file.csv/file.jsonl]";

    importDataTextSentimentAnalysisSample(project, datasetId, gcsSourceUri);
  }

  static void importDataTextSentimentAnalysisSample(
      String project, String datasetId, String gcsSourceUri)
      throws IOException, InterruptedException, ExecutionException, TimeoutException {
    DatasetServiceSettings datasetServiceSettings =
        DatasetServiceSettings.newBuilder()
            .setEndpoint("us-central1-aiplatform.googleapis.com:443")
            .build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (DatasetServiceClient datasetServiceClient =
        DatasetServiceClient.create(datasetServiceSettings)) {
      String location = "us-central1";
      String importSchemaUri =
          "gs://google-cloud-aiplatform/schema/dataset/ioformat/"
              + "text_sentiment_io_format_1.0.0.yaml";

      GcsSource.Builder gcsSource = GcsSource.newBuilder();
      gcsSource.addUris(gcsSourceUri);
      DatasetName datasetName = DatasetName.of(project, location, datasetId);

      List<ImportDataConfig> importDataConfigList =
          Collections.singletonList(
              ImportDataConfig.newBuilder()
                  .setGcsSource(gcsSource)
                  .setImportSchemaUri(importSchemaUri)
                  .build());

      OperationFuture<ImportDataResponse, ImportDataOperationMetadata> importDataResponseFuture =
          datasetServiceClient.importDataAsync(datasetName, importDataConfigList);
      System.out.format(
          "Operation name: %s\n", importDataResponseFuture.getInitialFuture().get().getName());

      System.out.println("Waiting for operation to finish...");
      ImportDataResponse importDataResponse = importDataResponseFuture.get(300, TimeUnit.SECONDS);
      System.out.format(
          "Import Data Text Sentiment Analysis Response: %s\n", importDataResponse.toString());
    }
  }
}

Node.js

/**
 * TODO(developer): Uncomment these variables before running the sample.\
 */

// const datasetId = "YOUR_DATASET_ID";
// const gcsSourceUri = "YOUR_GCS_SOURCE_URI";
// eg. "gs://<your-gcs-bucket>/<import_source_path>/[file.csv/file.jsonl]"
// const project = "YOUR_PROJECT_ID";
// const location = 'YOUR_PROJECT_LOCATION';

// Imports the Google Cloud Dataset Service Client library
const {DatasetServiceClient} = require('@google-cloud/aiplatform');

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: 'us-central1-aiplatform.googleapis.com',
};
const datasetServiceClient = new DatasetServiceClient(clientOptions);

async function importDataTextSentimentAnalysis() {
  const name = datasetServiceClient.datasetPath(project, location, datasetId);
  // Here we use only one import config with one source
  const importConfigs = [
    {
      gcsSource: {uris: [gcsSourceUri]},
      importSchemaUri:
        'gs://google-cloud-aiplatform/schema/dataset/ioformat/text_sentiment_io_format_1.0.0.yaml',
    },
  ];
  const request = {
    name,
    importConfigs,
  };

  // Import data request
  const [response] = await datasetServiceClient.importData(request);
  console.log(`Long running operation : ${response.name}`);

  // Wait for operation to complete
  const [importDataResponse] = await response.promise();

  console.log(
    `Import data text sentiment analysis response  : \
      ${JSON.stringify(importDataResponse.result, null, 2)}`
  );
}
importDataTextSentimentAnalysis();

Python

def import_data_text_sentiment_analysis_sample(
    project: str,
    location: str,
    dataset: str,
    src_uris: Union[str, List[str]],
    sync: bool = True,
):
    aiplatform.init(project=project, location=location)

    ds = aiplatform.TextDataset(dataset)
    ds.import_data(
        gcs_source=src_uris,
        import_schema_uri=aiplatform.schema.dataset.ioformat.text.sentiment,
        sync=sync,
    )

    ds.wait()

    print(ds.display_name)
    print(ds.resource_name)
    return ds

동영상

아래에서 목표에 대한 탭을 선택합니다.

동작 인식

REST 및 명령줄

요청 데이터를 사용하기 전에 다음을 바꿉니다.

  • LOCATION: 데이터 세트를 저장할 리전입니다. 예를 들면 us-central1입니다.
  • PROJECT: 프로젝트 ID 또는 프로젝트 번호입니다.
  • DATASET_ID: 데이터 세트의 ID입니다.
  • IMPORT_FILE_URI: 모델 학습에 사용할 Cloud Storage에 저장된 데이터 항목을 나열하는 Cloud Storage의 CSV 또는 JSONL 파일 경로입니다. 가져오기 파일 형식과 제한사항에 대한 자세한 내용은 동영상 데이터 준비를 참조하세요.
  • OBJECTIVE: '분류', '객체 추적' 또는 '동작 인식' 모델 목표를 지정합니다.
  • PROJECT_NUMBER: 프로젝트의 프로젝트 번호입니다(응답에 표시됨).

HTTP 메서드 및 URL:

POST https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/datasets/DATASET_ID:import

JSON 요청 본문:

{
  "import_configs": [
    {
      "gcs_source": {
        "uris": "IMPORT_FILE_URI"
      },
     "import_schema_uri" : "gs://google-cloud-aiplatform/schema/dataset/ioformat/automl_video_OBJECTIVE_io_format_1.0.0.yaml"
    }
  ]
}

요청을 보내려면 다음 옵션 중 하나를 선택합니다.

curl

요청 본문을 request.json 파일에 저장하고 다음 명령어를 실행합니다.

curl -X POST \
-H "Authorization: Bearer "$(gcloud auth application-default print-access-token) \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/datasets/DATASET_ID:import"

PowerShell

요청 본문을 request.json 파일에 저장하고 다음 명령어를 실행합니다.

$cred = gcloud auth application-default print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/datasets/DATASET_ID:import" | Select-Object -Expand Content

다음과 비슷한 출력이 표시됩니다. 응답의 OPERATION_ID를 사용하여 작업 상태를 확인할 수 있습니다.

{
  "name": "projects/PROJECT_NUMBER/locations/LOCATION/datasets/DATASET_ID/operations/OPERATION_ID",
  "metadata": {
    "@type": "type.googleapis.com/google.cloud.aiplatform.v1.ImportDataOperationMetadata",
    "genericMetadata": {
      "createTime": "2020-10-08T20:32:02.543801Z",
      "updateTime": "2020-10-08T20:32:02.543801Z"
    }
  }
}

자바

import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.aiplatform.v1.DatasetName;
import com.google.cloud.aiplatform.v1.DatasetServiceClient;
import com.google.cloud.aiplatform.v1.DatasetServiceSettings;
import com.google.cloud.aiplatform.v1.GcsSource;
import com.google.cloud.aiplatform.v1.ImportDataConfig;
import com.google.cloud.aiplatform.v1.ImportDataOperationMetadata;
import com.google.cloud.aiplatform.v1.ImportDataResponse;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.ExecutionException;

public class ImportDataVideoActionRecognitionSample {

  public static void main(String[] args)
      throws IOException, ExecutionException, InterruptedException {
    // TODO(developer): Replace these variables before running the sample.
    String project = "PROJECT";
    String datasetId = "DATASET_ID";
    String gcsSourceUri = "GCS_SOURCE_URI";
    importDataVideoActionRecognitionSample(project, datasetId, gcsSourceUri);
  }

  static void importDataVideoActionRecognitionSample(
      String project, String datasetId, String gcsSourceUri)
      throws IOException, ExecutionException, InterruptedException {
    DatasetServiceSettings settings =
        DatasetServiceSettings.newBuilder()
            .setEndpoint("us-central1-aiplatform.googleapis.com:443")
            .build();
    String location = "us-central1";

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (DatasetServiceClient client = DatasetServiceClient.create(settings)) {
      GcsSource gcsSource = GcsSource.newBuilder().addUris(gcsSourceUri).build();
      ImportDataConfig importConfig0 =
          ImportDataConfig.newBuilder()
              .setGcsSource(gcsSource)
              .setImportSchemaUri(
                  "gs://google-cloud-aiplatform/schema/dataset/ioformat/"
                      + "video_action_recognition_io_format_1.0.0.yaml")
              .build();
      List<ImportDataConfig> importConfigs = new ArrayList<>();
      importConfigs.add(importConfig0);
      DatasetName name = DatasetName.of(project, location, datasetId);
      OperationFuture<ImportDataResponse, ImportDataOperationMetadata> response =
          client.importDataAsync(name, importConfigs);

      // You can use OperationFuture.getInitialFuture to get a future representing the initial
      // response to the request, which contains information while the operation is in progress.
      System.out.format("Operation name: %s\n", response.getInitialFuture().get().getName());

      // OperationFuture.get() will block until the operation is finished.
      ImportDataResponse importDataResponse = response.get();
      System.out.format("importDataResponse: %s\n", importDataResponse);
    }
  }
}

Python

def import_data_video_action_recognition_sample(
    project: str,
    location: str,
    dataset_name: str,
    src_uris: Union[str, List[str]],
    sync: bool = True,
):
    aiplatform.init(project=project, location=location)

    ds = aiplatform.VideoDataset(dataset_name=dataset_name)

    ds.import_data(
        gcs_source=src_uris,
        import_schema_uri=aiplatform.schema.dataset.ioformat.video.action_recognition,
        sync=sync,
    )

    ds.wait()

    print(ds.display_name)
    print(ds.resource_name)
    return ds

분류

REST 및 명령줄

요청 데이터를 사용하기 전에 다음을 바꿉니다.

  • LOCATION: 데이터 세트를 저장할 리전입니다. 예를 들면 us-central1입니다.
  • PROJECT: 프로젝트 ID 또는 프로젝트 번호입니다.
  • DATASET_ID: 데이터 세트의 ID입니다.
  • IMPORT_FILE_URI: 모델 학습에 사용할 Cloud Storage에 저장된 데이터 항목을 나열하는 Cloud Storage의 CSV 또는 JSONL 파일 경로입니다. 가져오기 파일 형식과 제한사항에 대한 자세한 내용은 동영상 데이터 준비를 참조하세요.
  • OBJECTIVE: '분류', '객체 추적' 또는 '동작 인식' 모델 목표를 지정합니다.
  • PROJECT_NUMBER: 프로젝트의 프로젝트 번호입니다(응답에 표시됨).

HTTP 메서드 및 URL:

POST https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/datasets/DATASET_ID:import

JSON 요청 본문:

{
  "import_configs": [
    {
      "gcs_source": {
        "uris": "IMPORT_FILE_URI"
      },
     "import_schema_uri" : "gs://google-cloud-aiplatform/schema/dataset/ioformat/automl_video_OBJECTIVE_io_format_1.0.0.yaml"
    }
  ]
}

요청을 보내려면 다음 옵션 중 하나를 선택합니다.

curl

요청 본문을 request.json 파일에 저장하고 다음 명령어를 실행합니다.

curl -X POST \
-H "Authorization: Bearer "$(gcloud auth application-default print-access-token) \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/datasets/DATASET_ID:import"

PowerShell

요청 본문을 request.json 파일에 저장하고 다음 명령어를 실행합니다.

$cred = gcloud auth application-default print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/datasets/DATASET_ID:import" | Select-Object -Expand Content

다음과 비슷한 출력이 표시됩니다. 응답의 OPERATION_ID를 사용하여 작업 상태를 확인할 수 있습니다.

{
  "name": "projects/PROJECT_NUMBER/locations/LOCATION/datasets/DATASET_ID/operations/OPERATION_ID",
  "metadata": {
    "@type": "type.googleapis.com/google.cloud.aiplatform.v1.ImportDataOperationMetadata",
    "genericMetadata": {
      "createTime": "2020-10-08T20:32:02.543801Z",
      "updateTime": "2020-10-08T20:32:02.543801Z"
    }
  }
}

자바


import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.aiplatform.v1.DatasetName;
import com.google.cloud.aiplatform.v1.DatasetServiceClient;
import com.google.cloud.aiplatform.v1.DatasetServiceSettings;
import com.google.cloud.aiplatform.v1.GcsSource;
import com.google.cloud.aiplatform.v1.ImportDataConfig;
import com.google.cloud.aiplatform.v1.ImportDataOperationMetadata;
import com.google.cloud.aiplatform.v1.ImportDataResponse;
import java.io.IOException;
import java.util.Collections;
import java.util.List;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;

public class ImportDataVideoClassificationSample {

  public static void main(String[] args)
      throws InterruptedException, ExecutionException, TimeoutException, IOException {
    // TODO(developer): Replace these variables before running the sample.
    String gcsSourceUri =
        "gs://YOUR_GCS_SOURCE_BUCKET/path_to_your_video_source/[file.csv/file.jsonl]";
    String project = "YOUR_PROJECT_ID";
    String datasetId = "YOUR_DATASET_ID";
    importDataVideoClassification(gcsSourceUri, project, datasetId);
  }

  static void importDataVideoClassification(String gcsSourceUri, String project, String datasetId)
      throws IOException, ExecutionException, InterruptedException, TimeoutException {
    DatasetServiceSettings datasetServiceSettings =
        DatasetServiceSettings.newBuilder()
            .setEndpoint("us-central1-aiplatform.googleapis.com:443")
            .build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (DatasetServiceClient datasetServiceClient =
        DatasetServiceClient.create(datasetServiceSettings)) {
      String location = "us-central1";
      String importSchemaUri =
          "gs://google-cloud-aiplatform/schema/dataset/ioformat/"
              + "video_classification_io_format_1.0.0.yaml";

      GcsSource.Builder gcsSource = GcsSource.newBuilder();
      gcsSource.addUris(gcsSourceUri);

      DatasetName datasetName = DatasetName.of(project, location, datasetId);
      List<ImportDataConfig> importDataConfigs =
          Collections.singletonList(
              ImportDataConfig.newBuilder()
                  .setGcsSource(gcsSource)
                  .setImportSchemaUri(importSchemaUri)
                  .build());

      OperationFuture<ImportDataResponse, ImportDataOperationMetadata> importDataResponseFuture =
          datasetServiceClient.importDataAsync(datasetName, importDataConfigs);
      System.out.format(
          "Operation name: %s\n", importDataResponseFuture.getInitialFuture().get().getName());
      System.out.println("Waiting for operation to finish...");
      ImportDataResponse importDataResponse = importDataResponseFuture.get(1800, TimeUnit.SECONDS);

      System.out.format(
          "Import Data Video Classification Response: %s\n", importDataResponse.toString());
    }
  }
}

Node.js

/**
 * TODO(developer): Uncomment these variables before running the sample.\
 * (Not necessary if passing values as arguments)
 */

// const datasetId = 'YOUR_DATASET_ID';
// const gcsSourceUri = 'YOUR_GCS_SOURCE_URI';
// eg. 'gs://<your-gcs-bucket>/<import_source_path>/[file.csv/file.jsonl]'
// const project = 'YOUR_PROJECT_ID';
// const location = 'YOUR_PROJECT_LOCATION';

// Imports the Google Cloud Dataset Service Client library
const {DatasetServiceClient} = require('@google-cloud/aiplatform');

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: 'us-central1-aiplatform.googleapis.com',
};
const datasetServiceClient = new DatasetServiceClient(clientOptions);

async function importDataVideoClassification() {
  const name = datasetServiceClient.datasetPath(project, location, datasetId);
  // Here we use only one import config with one source
  const importConfigs = [
    {
      gcsSource: {uris: [gcsSourceUri]},
      importSchemaUri:
        'gs://google-cloud-aiplatform/schema/dataset/ioformat/video_classification_io_format_1.0.0.yaml',
    },
  ];
  const request = {
    name,
    importConfigs,
  };

  // Create Import Data Request
  const [response] = await datasetServiceClient.importData(request);
  console.log(`Long running operation : ${response.name}`);

  // Wait for operation to complete
  await response.promise();

  console.log(
    `Import data video classification response : \
      ${JSON.stringify(response.result)}`
  );
}
importDataVideoClassification();

Python

def import_data_video_classification_sample(
    project: str,
    location: str,
    dataset_name: str,
    src_uris: Union[str, List[str]],
    sync: bool = True,
):
    aiplatform.init(project=project, location=location)

    ds = aiplatform.VideoDataset(dataset_name=dataset_name)

    print(ds.display_name)
    print(ds.resource_name)

    ds.import_data(
        gcs_source=src_uris,
        import_schema_uri=aiplatform.schema.dataset.ioformat.video.classification,
        sync=sync,
    )

    ds.wait()

    return ds

객체 추적

REST 및 명령줄

요청 데이터를 사용하기 전에 다음을 바꿉니다.

  • LOCATION: 데이터 세트를 저장할 리전입니다. 예를 들면 us-central1입니다.
  • PROJECT: 프로젝트 ID 또는 프로젝트 번호입니다.
  • DATASET_ID: 데이터 세트의 ID입니다.
  • IMPORT_FILE_URI: 모델 학습에 사용할 Cloud Storage에 저장된 데이터 항목을 나열하는 Cloud Storage의 CSV 또는 JSONL 파일 경로입니다. 가져오기 파일 형식과 제한사항에 대한 자세한 내용은 동영상 데이터 준비를 참조하세요.
  • OBJECTIVE: '분류', '객체 추적' 또는 '동작 인식' 모델 목표를 지정합니다.
  • PROJECT_NUMBER: 프로젝트의 프로젝트 번호입니다(응답에 표시됨).

HTTP 메서드 및 URL:

POST https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/datasets/DATASET_ID:import

JSON 요청 본문:

{
  "import_configs": [
    {
      "gcs_source": {
        "uris": "IMPORT_FILE_URI"
      },
     "import_schema_uri" : "gs://google-cloud-aiplatform/schema/dataset/ioformat/automl_video_OBJECTIVE_io_format_1.0.0.yaml"
    }
  ]
}

요청을 보내려면 다음 옵션 중 하나를 선택합니다.

curl

요청 본문을 request.json 파일에 저장하고 다음 명령어를 실행합니다.

curl -X POST \
-H "Authorization: Bearer "$(gcloud auth application-default print-access-token) \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/datasets/DATASET_ID:import"

PowerShell

요청 본문을 request.json 파일에 저장하고 다음 명령어를 실행합니다.

$cred = gcloud auth application-default print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/datasets/DATASET_ID:import" | Select-Object -Expand Content

다음과 비슷한 출력이 표시됩니다. 응답의 OPERATION_ID를 사용하여 작업 상태를 확인할 수 있습니다.

{
  "name": "projects/PROJECT_NUMBER/locations/LOCATION/datasets/DATASET_ID/operations/OPERATION_ID",
  "metadata": {
    "@type": "type.googleapis.com/google.cloud.aiplatform.v1.ImportDataOperationMetadata",
    "genericMetadata": {
      "createTime": "2020-10-08T20:32:02.543801Z",
      "updateTime": "2020-10-08T20:32:02.543801Z"
    }
  }
}

자바


import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.aiplatform.v1.DatasetName;
import com.google.cloud.aiplatform.v1.DatasetServiceClient;
import com.google.cloud.aiplatform.v1.DatasetServiceSettings;
import com.google.cloud.aiplatform.v1.GcsSource;
import com.google.cloud.aiplatform.v1.ImportDataConfig;
import com.google.cloud.aiplatform.v1.ImportDataOperationMetadata;
import com.google.cloud.aiplatform.v1.ImportDataResponse;
import java.io.IOException;
import java.util.Collections;
import java.util.List;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;

public class ImportDataVideoObjectTrackingSample {

  public static void main(String[] args)
      throws IOException, ExecutionException, InterruptedException, TimeoutException {
    String gcsSourceUri =
        "gs://YOUR_GCS_SOURCE_BUCKET/path_to_your_video_source/[file.csv/file.jsonl]";
    String project = "YOUR_PROJECT_ID";
    String datasetId = "YOUR_DATASET_ID";
    importDataVideObjectTracking(gcsSourceUri, project, datasetId);
  }

  static void importDataVideObjectTracking(String gcsSourceUri, String project, String datasetId)
      throws IOException, ExecutionException, InterruptedException, TimeoutException {
    DatasetServiceSettings datasetServiceSettings =
        DatasetServiceSettings.newBuilder()
            .setEndpoint("us-central1-aiplatform.googleapis.com:443")
            .build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (DatasetServiceClient datasetServiceClient =
        DatasetServiceClient.create(datasetServiceSettings)) {
      String location = "us-central1";
      String importSchemaUri =
          "gs://google-cloud-aiplatform/schema/dataset/ioformat/"
              + "video_object_tracking_io_format_1.0.0.yaml";

      GcsSource.Builder gcsSource = GcsSource.newBuilder();
      gcsSource.addUris(gcsSourceUri);
      DatasetName datasetName = DatasetName.of(project, location, datasetId);
      List<ImportDataConfig> importDataConfigs =
          Collections.singletonList(
              ImportDataConfig.newBuilder()
                  .setGcsSource(gcsSource)
                  .setImportSchemaUri(importSchemaUri)
                  .build());

      OperationFuture<ImportDataResponse, ImportDataOperationMetadata> importDataResponseFuture =
          datasetServiceClient.importDataAsync(datasetName, importDataConfigs);
      System.out.format(
          "Operation name: %s\n", importDataResponseFuture.getInitialFuture().get().getName());
      System.out.println("Waiting for operation to finish...");
      ImportDataResponse importDataResponse = importDataResponseFuture.get(300, TimeUnit.SECONDS);

      System.out.format(
          "Import Data Video Object Tracking Response: %s\n", importDataResponse.toString());
    }
  }
}

Node.js

/**
 * TODO(developer): Uncomment these variables before running the sample.\
 */

// const datasetId = 'YOUR_DATASET_ID';
// const gcsSourceUri = 'YOUR_GCS_SOURCE_URI';
// eg. 'gs://<your-gcs-bucket>/<import_source_path>/[file.csv/file.jsonl]'
// const project = 'YOUR_PROJECT_ID';
// const location = 'YOUR_PROJECT_LOCATION';

// Imports the Google Cloud Dataset Service Client library
const {DatasetServiceClient} = require('@google-cloud/aiplatform');

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: 'us-central1-aiplatform.googleapis.com',
};
const datasetServiceClient = new DatasetServiceClient(clientOptions);

async function importDataVideoObjectTracking() {
  const name = datasetServiceClient.datasetPath(project, location, datasetId);
  // Here we use only one import config with one source
  const importConfigs = [
    {
      gcsSource: {uris: [gcsSourceUri]},
      importSchemaUri:
        'gs://google-cloud-aiplatform/schema/dataset/ioformat/video_object_tracking_io_format_1.0.0.yaml',
    },
  ];
  const request = {
    name,
    importConfigs,
  };

  // Create Import Data Request
  const [response] = await datasetServiceClient.importData(request);
  console.log(`Long running operation: ${JSON.stringify(response.name)}`);

  // Wait for operation to complete
  const [importDataResponse] = await response.promise();

  console.log(
    `Import data video object tracking response : \
      ${JSON.stringify(importDataResponse)}`
  );
}
importDataVideoObjectTracking();

Python

def import_data_video_object_tracking_sample(
    project: str,
    location: str,
    dataset_name: str,
    src_uris: Union[str, List[str]],
    sync: bool = True,
):
    aiplatform.init(project=project, location=location)

    ds = aiplatform.VideoDataset(dataset_name=dataset_name)

    ds.import_data(
        gcs_source=src_uris,
        import_schema_uri=aiplatform.schema.dataset.ioformat.video.object_tracking,
        sync=sync,
    )

    ds.wait()

    print(ds.display_name)
    print(ds.resource_name)
    return ds

작업 상태 가져오기

일부 요청은 완료하는 데 시간이 걸리는 장기 실행 작업을 시작합니다. 이러한 요청은 작업 상태를 보거나 작업을 취소하는 데 사용할 수 있는 작업 이름을 반환합니다. Vertex AI는 장기 실행 작업을 호출하는 도우미 메서드를 제공합니다. 자세한 내용은 장기 실행 작업 다루기를 참조하세요.

다음 단계