Ce tutoriel explique comment diffuser un grand modèle de langage (LLM) Gemma utilisant des processeurs graphiques (GPU) sur Google Kubernetes Engine (GKE), à l'aide de la pile de diffusion NVIDIA Triton et TensorRT-LLM pour une inférence efficace basée sur les GPU avec l'orchestration Kubernetes. Dans ce tutoriel, vous allez télécharger les modèles Gemma adaptés aux instruction de paramètres 2B et 7B, et les déployer sur un cluster GKE Autopilot ou Standard à l'aide d'un conteneur exécutant Triton et TensorRT-LLM.
Ce guide est un bon point de départ si vous avez besoin du contrôle précis, de l'évolutivité, de la résilience, de la portabilité et de la rentabilité des services Kubernetes gérés lors du déploiement et de la diffusion de vos charges de travail d'IA/de ML. Si vous avez besoin d'une plate-forme d'IA gérée unifiée pour créer et diffuser rapidement des modèles de ML à moindre coût, nous vous recommandons d'essayer notre solution de déploiement Vertex AI.
Contexte
En diffusant Gemma à l'aide de GPU sur GKE avec Triton et TensorRT-LLM, vous pouvez mettre en œuvre une solution de diffusion d'inférences robuste et prête pour la production avec tous les avantages de Kubernetes géré, y compris une évolutivité efficace et une meilleure disponibilité. Cette section décrit les principales technologies utilisées dans ce guide.
Gemma
Gemma est un ensemble de modèles d'intelligence artificielle (IA) générative, légers et disponibles publiquement, publiés sous licence ouverte. Ces modèles d'IA sont disponibles pour s'exécuter dans vos applications, votre matériel, vos appareils mobiles ou vos services hébergés. Vous pouvez utiliser les modèles Gemma pour la génération de texte, mais vous pouvez également les ajuster pour des tâches spécialisées.
Pour en savoir plus, consultez la documentation Gemma.
GPU
Les GPU vous permettent d'accélérer des charges de travail spécifiques exécutées sur vos nœuds, telles que le machine learning et le traitement de données. GKE fournit toute une gamme d'options de types de machines pour la configuration des nœuds, y compris les types de machines avec des GPU NVIDIA H100, L4 et A100.
Avant d'utiliser des GPU dans GKE, nous vous recommandons de suivre le parcours de formation suivant :
- Découvrez la disponibilité actuelle des versions des GPU.
- Apprenez-en plus sur les GPU dans GKE.
TensorRT-LLM
NVIDIA TensorRT-LLM (TRT-LLM) est un kit d'outils doté d'une API Python permettant d'assembler des solutions optimisées afin de définir des LLM et de créer des moteurs TensorRT qui effectuent des inférences de manière efficace sur les GPU NVIDIA. TensorRT-LLM inclut des fonctionnalités telles que:
- Implémentation optimisée du transformateur avec fusions des couches, mise en cache d'activation, réutilisation du tampon de mémoire et PagedAttention
- Traitement par lot en vol ou continu pour améliorer le débit global de diffusion
- Parallélisme Tensor et parallélisme des pipelines pour une diffusion distribuée sur plusieurs GPU
- Quantification (FP16, FP8, INT8)
Pour en savoir plus, consultez la documentation de TensorRT-LLM.
Triton
NVIDIA Triton Inference Server est un serveur d'inférence Open Source pour les applications d'IA et de ML. Triton accepte une inférence hautes performances sur les GPU NVIDIA et les processeurs avec des backends optimisés, y compris TensorRT et TensorRT-LLM. Triton inclut des fonctionnalités telles que:
- Inférence multi-GPU et multinœud
- Exécution simultanée de plusieurs modèles
- Assemblage ou chaînage du modèle
- Traitement par lot statique, dynamique et continu ou en vol des requêtes de prédiction
Pour en savoir plus, consultez la documentation de Triton.
Objectifs
Ce guide est destiné aux clients d'IA générative qui utilisent PyTorch, aux utilisateurs nouveaux ou existants de GKE, aux ingénieurs en ML, aux ingénieurs MLOps (DevOps) ou aux administrateurs de plate-forme qui s'intéressent à l'utilisation des fonctionnalités d'orchestration de conteneurs Kubernetes pour diffuser des LLM sur du matériel GPU H100, A100 et L4.
À la fin de ce guide, vous devriez être capable d'effectuer les étapes suivantes:
- Préparez votre environnement avec un cluster GKE en mode Autopilot.
- Déployer un conteneur avec Triton et TritonRT-LLM sur votre cluster.
- Utiliser Triton et TensorRT-LLM pour diffuser le modèle Gemma 2B ou 7B via curl.
Avant de commencer
- Sign in to your Google Cloud account. If you're new to Google Cloud, create an account to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.
-
In the Google Cloud console, on the project selector page, select or create a Google Cloud project.
-
Make sure that billing is enabled for your Google Cloud project.
-
Enable the required API.
-
In the Google Cloud console, on the project selector page, select or create a Google Cloud project.
-
Make sure that billing is enabled for your Google Cloud project.
-
Enable the required API.
-
Make sure that you have the following role or roles on the project: roles/container.admin, roles/iam.serviceAccountAdmin
Check for the roles
-
In the Google Cloud console, go to the IAM page.
Go to IAM - Select the project.
-
In the Principal column, find all rows that identify you or a group that you're included in. To learn which groups you're included in, contact your administrator.
- For all rows that specify or include you, check the Role colunn to see whether the list of roles includes the required roles.
Grant the roles
-
In the Google Cloud console, go to the IAM page.
Accéder à IAM - Sélectionnez le projet.
- Cliquez sur Accorder l'accès.
-
Dans le champ Nouveaux comptes principaux, saisissez votre identifiant utilisateur. Il s'agit généralement de l'adresse e-mail d'un compte Google.
- Dans la liste Sélectionner un rôle, sélectionnez un rôle.
- Pour attribuer des rôles supplémentaires, cliquez sur Ajouter un autre rôle et ajoutez chaque rôle supplémentaire.
- Cliquez sur Enregistrer.
-
- Créez un compte Kaggle, si vous n'en possédez pas.
- Assurez-vous que votre projet dispose d'un quota suffisant pour les GPU. Pour en savoir plus, consultez les pages À propos des GPU et Quotas d'allocation.
Préparer votre environnement
Dans ce tutoriel, vous utilisez Cloud Shell pour gérer les ressources hébergées sur Google Cloud. Cloud Shell est préinstallé avec les logiciels dont vous avez besoin pour ce tutoriel, y compris kubectl
et gcloud CLI.
Pour configurer votre environnement avec Cloud Shell, procédez comme suit :
Dans la console Google Cloud, lancez une session Cloud Shell en cliquant sur Activer Cloud Shell dans la console Google Cloud. Une session s'ouvre dans le volet inférieur de la console Google Cloud.
Définissez les variables d'environnement par défaut :
gcloud config set project PROJECT_ID export PROJECT_ID=$(gcloud config get project) export REGION=REGION export CLUSTER_NAME=triton
Remplacez les valeurs suivantes :
- PROJECT_ID : L'ID de votre projet Google Cloud.
- REGION: région compatible avec le type d'accélérateur que vous souhaitez utiliser, par exemple
us-central1
pour les GPU L4.
Accéder au modèle
Pour accéder aux modèles Gemma, vous devez vous connecter à la plate-forme Kaggle et obtenir un jeton d'API Kaggle.
Signer le contrat de consentement de la licence
Vous devez signer le contrat de consentement pour utiliser Gemma. Procédez comme suit :
- Accédez à la page d'autorisation du modèle sur Kaggle.com.
- Connectez-vous à Kaggle si vous ne l'avez pas déjà fait.
- Cliquez sur Demande d'accès.
- Dans la section Choose Account for Consent (Choisir un compte pour le consentement), sélectionnez Verify via Kaggle Account (Vérifier via un compte Kaggle) pour utiliser votre compte Kaggle pour le consentement.
- Acceptez les Conditions d'utilisation du modèle.
Générer un jeton d'accès
Pour accéder au modèle via Kaggle, vous avez besoin d'un jeton d'API Kaggle. Pour générer un nouveau jeton si vous n'en possédez pas, procédez comme suit:
- Dans votre navigateur, accédez aux paramètres Kaggle.
- Dans la section "API", cliquez sur Créer un jeton.
Un fichier nommé kaggle.json
est téléchargé.
Importer le jeton d'accès dans Cloud Shell
Dans Cloud Shell, importez le jeton d'API Kaggle dans votre projet Google Cloud:
- Dans Cloud Shell, cliquez sur > Importer. Plus
- Sélectionnez "Fichier", puis cliquez sur Sélectionner des fichiers.
- Ouvrez le fichier
kaggle.json
. - Cliquez sur Importer.
Créer et configurer des ressources Google Cloud
Suivez les instructions ci-dessous pour créer les ressources requises.
Créer un cluster GKE et un pool de nœuds
Vous pouvez diffuser les modèles Gemma sur des GPU dans un cluster GKE Autopilot ou GKE Standard. Nous vous recommandons d'utiliser un cluster GKE Autopilot pour une expérience Kubernetes entièrement gérée. Pour choisir le mode de fonctionnement GKE le mieux adapté à vos charges de travail, consultez la section Choisir un mode de fonctionnement GKE.
Autopilot
Dans Cloud Shell, exécutez la commande suivante :
gcloud container clusters create-auto ${CLUSTER_NAME} \
--project=${PROJECT_ID} \
--region=${REGION} \
--release-channel=rapid \
--cluster-version=1.28
GKE crée un cluster Autopilot avec des nœuds de processeur et de GPU, à la demande des charges de travail déployées.
Standard
Dans Cloud Shell, exécutez la commande suivante pour créer un cluster GKE Standard :
gcloud container clusters create ${CLUSTER_NAME} \ --project=${PROJECT_ID} \ --location=${REGION}-a \ --workload-pool=${PROJECT_ID}.svc.id.goog \ --release-channel=rapid \ --machine-type=e2-standard-4 \ --num-nodes=1
La création du cluster peut prendre plusieurs minutes.
Exécutez la commande suivante pour créer un pool de nœuds pour votre cluster :
gcloud container node-pools create gpupool \ --accelerator type=nvidia-l4,count=1,gpu-driver-version=latest \ --project=${PROJECT_ID} \ --location=${REGION}-a \ --cluster=${CLUSTER_NAME} \ --machine-type=g2-standard-12 \ --num-nodes=1
GKE crée un pool de nœuds unique contenant un nœud GPU L4.
Créer un secret Kubernetes pour les identifiants Kaggle
Dans ce tutoriel, vous utilisez un secret Kubernetes pour les identifiants Kaggle.
Dans Cloud Shell, procédez comme suit :
Configurez
kubectl
de manière à communiquer avec votre cluster :gcloud container clusters get-credentials ${CLUSTER_NAME} --location=${REGION}
Créez un secret pour stocker les identifiants Kaggle:
kubectl create secret generic kaggle-secret \ --from-file=kaggle.json \ --dry-run=client -o yaml | kubectl apply -f -
Créer une ressource PersistentVolume pour stocker des points de contrôle
Dans cette section, vous allez créer un objet PersistentVolume sauvegardé par un disque persistant pour stocker les points de contrôle du modèle.
Créez le fichier manifeste
trtllm_checkpoint_pv.yaml
suivant :Appliquez le fichier manifeste :
kubectl apply -f trtllm_checkpoint_pv.yaml
Télécharger les fichiers du moteur TensorRT-LLM pour Gemma
Dans cette section, vous allez exécuter une tâche pour télécharger les fichiers du moteur TensorRT-LLM et les stocker dans le volume persistant que vous avez créé précédemment. La tâche prépare également les fichiers de configuration pour le déploiement du modèle sur le serveur Triton à l'étape suivante. Ce processus peut prendre quelques minutes.
Gemma 2B-it
Le moteur TensorRT-LLM est créé à partir du point de contrôle PyTorch de Gemma du modèle Gemma 2B-it (adapté aux instructions) à l'aide de l'activation bfloat16
, de GPU L4 ciblés d'une longueur de séquence d'entrée égale à 2 048 et d'une longueur de séquence de sortie égale à 1 024. Vous pouvez déployer le modèle sur un seul GPU L4.
Créez le fichier manifeste
job-download-gemma-2b.yaml
suivant :Appliquez le fichier manifeste :
kubectl apply -f job-download-gemma-2b.yaml
Affichez les journaux de la tâche:
kubectl logs -f job/data-loader-gemma-2b
La sortie des journaux est semblable à celle-ci:
... Creating configuration files + echo -e '\n02-16-2024 04:07:45 Completed building TensortRT-LLM engine at /data/trt_engine/gemma/2b/bfloat16/1-gpu/' + echo -e '\nCreating configuration files' ...
Attendez que la tâche soit terminée :
kubectl wait --for=condition=complete --timeout=900s job/data-loader-gemma-2b
Le résultat ressemble à ce qui suit :
job.batch/data-loader-gemma-2b condition met
Vérifiez que la tâche a bien été exécutée (cela peut prendre quelques minutes):
kubectl get job/data-loader-gemma-2b
Le résultat ressemble à ce qui suit :
NAME COMPLETIONS DURATION AGE data-loader-gemma-2b 1/1 ##s #m##s
Gemma 7B-it
Le moteur TensorRT-LLM est créé à partir du point de contrôle PyTorch de Gemma du modèle Gemma 7B-it (adapté aux instructions) à l'aide de l'activation bfloat16
, de GPU L4 ciblés d'une longueur de séquence d'entrée égale à 1 024 et d'une longueur de séquence de sortie égale à 512. Vous pouvez déployer le modèle sur un seul GPU L4.
Créez le fichier manifeste
job-download-gemma-7b.yaml
suivant :Appliquez le fichier manifeste :
kubectl apply -f job-download-gemma-7b.yaml
Affichez les journaux de la tâche:
kubectl logs -f job/data-loader-gemma-7b
La sortie des journaux est semblable à celle-ci:
... Creating configuration files + echo -e '\n02-16-2024 04:07:45 Completed building TensortRT-LLM engine at /data/trt_engine/gemma/7b/bfloat16/1-gpu/' + echo -e '\nCreating configuration files' ...
Attendez que la tâche soit terminée :
kubectl wait --for=condition=complete --timeout=900s job/data-loader-gemma-7b
Le résultat ressemble à ce qui suit :
job.batch/data-loader-gemma-7b condition met
Vérifiez que la tâche a bien été exécutée (cela peut prendre quelques minutes):
kubectl get job/data-loader-gemma-7b
Le résultat ressemble à ce qui suit :
NAME COMPLETIONS DURATION AGE data-loader-gemma-7b 1/1 ##s #m##s
Assurez-vous que la tâche a bien été exécutée avant de passer à la section suivante.
Déployer Triton
Dans cette section, vous allez déployer un conteneur utilisant Triton avec le backend TensorRT-LLM pour diffuser le modèle Gemma que vous souhaitez utiliser.
Créez le fichier manifeste
deploy-triton-server.yaml
suivant :Appliquez le fichier manifeste :
kubectl apply -f deploy-triton-server.yaml
Attendez que le déploiement soit disponible :
kubectl wait --for=condition=Available --timeout=900s deployment/triton-gemma-deployment
Affichez les journaux à partir du fichier manifeste:
kubectl logs -f -l app=gemma-server
La ressource de déploiement lance le serveur Triton et charge les données du modèle. Ce processus peut prendre quelques minutes (jusqu'à 20 minutes, plus). Le résultat ressemble à ce qui suit :
I0216 03:24:57.387420 29 server.cc:676] +------------------+---------+--------+ | Model | Version | Status | +------------------+---------+--------+ | ensemble | 1 | READY | | postprocessing | 1 | READY | | preprocessing | 1 | READY | | tensorrt_llm | 1 | READY | | tensorrt_llm_bls | 1 | READY | +------------------+---------+--------+ .... .... .... I0216 03:24:57.425104 29 grpc_server.cc:2519] Started GRPCInferenceService at 0.0.0.0:8001 I0216 03:24:57.425418 29 http_server.cc:4623] Started HTTPService at 0.0.0.0:8000 I0216 03:24:57.466646 29 http_server.cc:315] Started Metrics Service at 0.0.0.0:8002
Diffuser le modèle
Dans cette section, vous allez interagir avec le modèle.
Configurer le transfert de port
Exécutez la commande suivante pour configurer le transfert de port sur le modèle:
kubectl port-forward service/triton-server 8000:8000
Le résultat ressemble à ce qui suit :
Forwarding from 127.0.0.1:8000 -> 8000
Forwarding from [::1]:8000 -> 8000
Handling connection for 8000
Interagir avec le modèle à l'aide de curl
Cette section explique comment effectuer un test de fumée de base pour vérifier le modèle adapté aux instructions déployé. Par souci de simplicité, cette section décrit l'approche de test uniquement avec le modèle adapté aux instructions 2B.
Dans une nouvelle session de terminal, utilisez curl
pour discuter avec votre modèle:
USER_PROMPT="I'm new to coding. If you could only recommend one programming language to start with, what would it be and why?"
curl -X POST localhost:8000/v2/models/ensemble/generate \
-H "Content-Type: application/json" \
-d @- <<EOF
{
"text_input": "<start_of_turn>user\n${USER_PROMPT}<end_of_turn>\n",
"temperature": 0.9,
"max_tokens": 128
}
EOF
Le résultat suivant affiche un exemple de réponse du modèle :
{
"context_logits": 0,
"cum_log_probs": 0,
"generation_logits": 0,
"model_name": "ensemble",
"model_version": "1",
"output_log_probs": [0.0,0.0,...],
"sequence_end": false,
"sequence_id": 0,
"sequence_start": false,
"text_output":"Python.\n\nPython is an excellent choice for beginners due to its simplicity, readability, and extensive documentation. Its syntax is close to natural language, making it easier for beginners to understand and write code. Python also has a vast collection of libraries and tools that make it versatile for various projects. Additionally, Python's dynamic nature allows for easier learning and experimentation, making it a perfect choice for newcomers to get started.Here are some specific reasons why Python is a good choice for beginners:\n\n- Simple and Easy to Read: Python's syntax is designed to be close to natural language, making it easier for"
}
Résoudre les problèmes
- Si le message
Empty reply from server
s'affiche, il est possible que le conteneur n'ait pas terminé le téléchargement des données du modèle. Vérifiez à nouveau dans les journaux du pod le messageConnected
indiquant que le modèle est prêt à être diffusé. - Si
Connection refused
s'affiche, vérifiez que le transfert de port est actif.
Effectuer un nettoyage
Pour éviter que les ressources utilisées lors de ce tutoriel soient facturées sur votre compte Google Cloud, supprimez le projet contenant les ressources, ou conservez le projet et supprimez les ressources individuelles.
Supprimer les ressources déployées
Pour éviter que les ressources que vous avez créées dans ce guide soient facturées sur votre compte Google Cloud, exécutez la commande suivante:
gcloud container clusters delete ${CLUSTER_NAME} \
--region=${REGION}
Étapes suivantes
- Apprenez-en plus sur les GPU dans GKE.
- Découvrez comment déployer des charges de travail GPU dans Autopilot.
- Découvrez comment déployer des charges de travail GPU dans Standard.
- Explorez le dépôt GitHub et la documentation TensorRT-LLM.
- Explorez Vertex AI Model Garden.
- Découvrez comment exécuter des charges de travail d'IA/ML optimisées avec les fonctionnalités d'orchestration de plate-forme GKE.