创建 k-means 模型以对伦敦自行车租赁数据集进行聚类


本教程将介绍如何在 BigQuery ML 中使用 k-means 模型识别一组数据中的集群。

用于将数据分为不同聚类的 k-means 算法是一种非监督式机器学习。监督式机器学习与预测分析有关,与此不同的是,非监督式机器学习与描述性分析有关。非监督式机器学习可以帮助您了解数据,以便您根据数据做出决策。

本教程中的查询使用地理空间分析中提供的地理位置函数。如需了解详情,请参阅地理空间分析简介

本教程使用的是伦敦自行车租赁公共数据集。数据包括起始和停止时间戳、车站名称和骑行时长。

目标

本教程将指导您完成以下任务:

  • 检查用于训练模型的数据。
  • 创建 k-means 聚类模型。
  • 使用 BigQuery ML 对聚类的可视化结果来解读生成的数据集群。
  • 对 k-means 模型运行 ML.PREDICT 函数,以预测一组自行车租赁站的可能聚类。

费用

本教程使用 Google Cloud 的收费组件,包括以下组件:

  • BigQuery
  • BigQuery ML

如需了解 BigQuery 费用,请参阅 BigQuery 价格页面。

如需了解 BigQuery ML 费用,请参阅 BigQuery ML 价格

准备工作

  1. Sign in to your Google Cloud account. If you're new to Google Cloud, create an account to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.
  2. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Go to project selector

  3. Make sure that billing is enabled for your Google Cloud project.

  4. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Go to project selector

  5. Make sure that billing is enabled for your Google Cloud project.

  6. 新项目会自动启用 BigQuery。如需在现有项目中激活 BigQuery,请前往

    Enable the BigQuery API.

    Enable the API

所需权限

  • 如需创建数据集,您需要拥有 bigquery.datasets.create IAM 权限。
  • 如需创建连接资源,您需要以下权限:

    • bigquery.connections.create
    • bigquery.connections.get
  • 如需创建模型,您需要以下权限:

    • bigquery.jobs.create
    • bigquery.models.create
    • bigquery.models.getData
    • bigquery.models.updateData
    • bigquery.connections.delegate
  • 如需运行推理,您需要以下权限:

    • bigquery.models.getData
    • bigquery.jobs.create

如需详细了解 BigQuery 中的 IAM 角色和权限,请参阅 IAM 简介

创建数据集

创建 BigQuery 数据集来存储 k-means 模型:

  1. 在 Google Cloud 控制台中,转到 BigQuery 页面。

    转到 BigQuery 页面

  2. 探索器窗格中,点击您的项目名称。

  3. 点击 查看操作 > 创建数据集

    创建数据集。

  4. 创建数据集页面上,执行以下操作:

    • 数据集 ID 部分,输入 bqml_tutorial

    • 位置类型部分,选择多区域,然后选择 EU (multiple regions in European Union)(欧盟[欧盟的多个区域])。

      伦敦自行车租赁公共数据集存储在 EU 多区域。数据集必须位于同一位置。

    • 保持其余默认设置不变,然后点击创建数据集

      创建数据集页面。

检查训练数据

检查您将用于训练 k-means 模型的数据。在本教程中,您根据以下属性为自行车站划分聚类:

  • 租赁时长
  • 每天的行程数量
  • 与市中心的距离

SQL

此查询提取有关自行车租赁的数据(包括 start_station_nameduration 列),并将这些数据与车站信息联接。这包括创建一个包含相应车站距离市中心的计算列。然后,查询会在 stationstats 列中计算车站的属性(包括平均骑行时长和行程数量),以及计算出的 distance_from_city_center 列。

请按照以下步骤检查训练数据:

  1. 在 Google Cloud 控制台中,转到 BigQuery 页面。

    转到 BigQuery

  2. 在查询编辑器中,粘贴以下查询,然后点击运行

    WITH
    hs AS (
      SELECT
        h.start_station_name AS station_name,
        IF(
          EXTRACT(DAYOFWEEK FROM h.start_date) = 1
            OR EXTRACT(DAYOFWEEK FROM h.start_date) = 7,
          'weekend',
          'weekday') AS isweekday,
        h.duration,
        ST_DISTANCE(ST_GEOGPOINT(s.longitude, s.latitude), ST_GEOGPOINT(-0.1, 51.5)) / 1000
          AS distance_from_city_center
      FROM
        `bigquery-public-data.london_bicycles.cycle_hire` AS h
      JOIN
        `bigquery-public-data.london_bicycles.cycle_stations` AS s
        ON
          h.start_station_id = s.id
      WHERE
        h.start_date
        BETWEEN CAST('2015-01-01 00:00:00' AS TIMESTAMP)
        AND CAST('2016-01-01 00:00:00' AS TIMESTAMP)
    ),
    stationstats AS (
      SELECT
        station_name,
        isweekday,
        AVG(duration) AS duration,
        COUNT(duration) AS num_trips,
        MAX(distance_from_city_center) AS distance_from_city_center
      FROM
        hs
      GROUP BY
        station_name, isweekday
    )
    SELECT *
    FROM
    stationstats
    ORDER BY
    distance_from_city_center ASC;

结果应如下所示:

查询结果

BigQuery DataFrame

在尝试此示例之前,请按照《BigQuery 快速入门:使用 BigQuery DataFrames》中的 BigQuery DataFrames 设置说明进行操作。如需了解详情,请参阅 BigQuery DataFrames 参考文档

如需向 BigQuery 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置 ADC

import datetime

import pandas as pd

import bigframes
import bigframes.pandas as bpd

bigframes.options.bigquery.project = your_gcp_project_id
# Compute in the EU multi-region to query the London bicycles dataset.
bigframes.options.bigquery.location = "EU"

# Extract the information you'll need to train the k-means model in this
# tutorial. Use the read_gbq function to represent cycle hires
# data as a DataFrame.
h = bpd.read_gbq(
    "bigquery-public-data.london_bicycles.cycle_hire",
    col_order=["start_station_name", "start_station_id", "start_date", "duration"],
).rename(
    columns={
        "start_station_name": "station_name",
        "start_station_id": "station_id",
    }
)

s = bpd.read_gbq(
    # Use ST_GEOPOINT and ST_DISTANCE to analyze geographical
    # data. These functions determine spatial relationships between
    # geographical features.
    """
    SELECT
    id,
    ST_DISTANCE(
        ST_GEOGPOINT(s.longitude, s.latitude),
        ST_GEOGPOINT(-0.1, 51.5)
    ) / 1000 AS distance_from_city_center
    FROM
    `bigquery-public-data.london_bicycles.cycle_stations` s
    """
)

# Define Python datetime objects in the UTC timezone for range comparison,
# because BigQuery stores timestamp data in the UTC timezone.
sample_time = datetime.datetime(2015, 1, 1, 0, 0, 0, tzinfo=datetime.timezone.utc)
sample_time2 = datetime.datetime(2016, 1, 1, 0, 0, 0, tzinfo=datetime.timezone.utc)

h = h.loc[(h["start_date"] >= sample_time) & (h["start_date"] <= sample_time2)]

# Replace each day-of-the-week number with the corresponding "weekday" or
# "weekend" label by using the Series.map method.
h = h.assign(
    isweekday=h.start_date.dt.dayofweek.map(
        {
            0: "weekday",
            1: "weekday",
            2: "weekday",
            3: "weekday",
            4: "weekday",
            5: "weekend",
            6: "weekend",
        }
    )
)

# Supplement each trip in "h" with the station distance information from
# "s" by merging the two DataFrames by station ID.
merged_df = h.merge(
    right=s,
    how="inner",
    left_on="station_id",
    right_on="id",
)

# Engineer features to cluster the stations. For each station, find the
# average trip duration, number of trips, and distance from city center.
stationstats = merged_df.groupby(["station_name", "isweekday"]).agg(
    {"duration": ["mean", "count"], "distance_from_city_center": "max"}
)
stationstats.columns = pd.Index(
    ["duration", "num_trips", "distance_from_city_center"]
)
stationstats = stationstats.sort_values(
    by="distance_from_city_center", ascending=True
).reset_index()

# Expected output results: >>> stationstats.head(3)
# station_name	isweekday duration  num_trips	distance_from_city_center
# Borough Road...	weekday	    1110	    5749	    0.12624
# Borough Road...	weekend	    2125	    1774	    0.12624
# Webber Street...	weekday	    795	        6517	    0.164021
#   3 rows × 5 columns

创建 k-means 模型

使用伦敦自行车租赁训练数据创建 k-means 模型。

SQL

在以下查询中,CREATE MODEL 语句指定要使用的聚类数量为 4。在 SELECT 语句中,EXCEPT 子句不包括 station_name 列,因为此列不包含特征。此查询为每个 station_name 创建一个唯一行,并且 SELECT 语句中只提及特征。

如需创建 k-means 模型,请按以下步骤操作:

  1. 在 Google Cloud 控制台中,转到 BigQuery 页面。

    转到 BigQuery

  2. 在查询编辑器中,粘贴以下查询,然后点击运行

    CREATE OR REPLACE MODEL `bqml_tutorial.london_station_clusters`
    OPTIONS (
      model_type = 'kmeans',
      num_clusters = 4)
    AS
    WITH
    hs AS (
      SELECT
        h.start_station_name AS station_name,
        IF(
          EXTRACT(DAYOFWEEK FROM h.start_date) = 1
            OR EXTRACT(DAYOFWEEK FROM h.start_date) = 7,
          'weekend',
          'weekday') AS isweekday,
        h.duration,
        ST_DISTANCE(ST_GEOGPOINT(s.longitude, s.latitude), ST_GEOGPOINT(-0.1, 51.5)) / 1000
          AS distance_from_city_center
      FROM
        `bigquery-public-data.london_bicycles.cycle_hire` AS h
      JOIN
        `bigquery-public-data.london_bicycles.cycle_stations` AS s
        ON
          h.start_station_id = s.id
      WHERE
        h.start_date
        BETWEEN CAST('2015-01-01 00:00:00' AS TIMESTAMP)
        AND CAST('2016-01-01 00:00:00' AS TIMESTAMP)
    ),
    stationstats AS (
      SELECT
        station_name,
        isweekday,
        AVG(duration) AS duration,
        COUNT(duration) AS num_trips,
        MAX(distance_from_city_center) AS distance_from_city_center
      FROM
        hs
      GROUP BY
        station_name, isweekday
    )
    SELECT *
    EXCEPT (station_name, isweekday)
    FROM
    stationstats;

BigQuery DataFrame

在尝试此示例之前,请按照《BigQuery 快速入门:使用 BigQuery DataFrames》中的 BigQuery DataFrames 设置说明进行操作。如需了解详情,请参阅 BigQuery DataFrames 参考文档

如需向 BigQuery 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置 ADC


from bigframes.ml.cluster import KMeans

# To determine an optimal number of clusters, construct and fit several
# K-Means objects with different values of num_clusters, find the error
# measure, and pick the point at which the error measure is at its minimum
# value.
cluster_model = KMeans(n_clusters=4)
cluster_model.fit(stationstats)
cluster_model.to_gbq(
    your_model_id,  # For example: "bqml_tutorial.london_station_clusters"
    replace=True,
)

解读数据集群

模型的评估标签页中的信息可帮助您解读模型生成的集群。

如需查看模型的评估信息,请按以下步骤操作:

  1. 在 Google Cloud 控制台中,转到 BigQuery 页面。

    转到 BigQuery

  2. 探索器窗格中,展开您的项目,展开 bqml_tutorial 数据集,然后展开模型文件夹。

  3. 选择 london_station_clusters 模型。

  4. 选择评估标签页。此标签页显示 k-means 模型标识的聚类的可视化。在数值特征部分,条形图会显示每个质心的最重要的数值特征值。每个质心都代表一组给定的数据。您可以从下拉菜单中选择要可视化的特征。

    数字特征图表

    此模型会创建以下质心:

    • 形心 1 显示一个不太繁忙的城市车站,租期较短。
    • 形心 2 显示第二个城市车站,该车站不太繁忙,用于较长的租期。
    • 形心 3 显示靠近市中心的一个繁忙城市车站。
    • 形心 4 显示一个行程较长的郊区车站。

    如果您经营的是自行车租赁业务,就可以利用这些信息制定业务决策。例如:

    • 假设您需要对一种新型车锁进行实验。您应该选择哪些车站作为此次实验的对象?形心 1、形心 2 或形心 4 中的车站似乎是合乎逻辑的选择,因为它们不是最繁忙的车站。

    • 假设您想要在一些车站投放赛车。您应该选择哪些车站?形心 4 是距离市中心较远且行程最长的车站组。这些车站适合作为赛车的候选车站。

使用 ML.PREDICT 函数预测车站的聚类

使用 ML.PREDICT SQL 函数或 predict BigQuery DataFrames 函数来识别特定车站所属的聚类。

SQL

以下查询使用 REGEXP_CONTAINS 函数查找 station_name 列中包含字符串 Kennington 的所有条目。ML.PREDICT 函数使用这些值来预测哪些聚类可能包含这些车站。

请按照以下步骤预测名称中包含字符串 Kennington 的每个车站的聚类:

  1. 在 Google Cloud 控制台中,转到 BigQuery 页面。

    转到 BigQuery

  2. 在查询编辑器中,粘贴以下查询,然后点击运行

    WITH
    hs AS (
      SELECT
        h.start_station_name AS station_name,
        IF(
          EXTRACT(DAYOFWEEK FROM h.start_date) = 1
            OR EXTRACT(DAYOFWEEK FROM h.start_date) = 7,
          'weekend',
          'weekday') AS isweekday,
        h.duration,
        ST_DISTANCE(ST_GEOGPOINT(s.longitude, s.latitude), ST_GEOGPOINT(-0.1, 51.5)) / 1000
          AS distance_from_city_center
      FROM
        `bigquery-public-data.london_bicycles.cycle_hire` AS h
      JOIN
        `bigquery-public-data.london_bicycles.cycle_stations` AS s
        ON
          h.start_station_id = s.id
      WHERE
        h.start_date
        BETWEEN CAST('2015-01-01 00:00:00' AS TIMESTAMP)
        AND CAST('2016-01-01 00:00:00' AS TIMESTAMP)
    ),
    stationstats AS (
      SELECT
        station_name,
        isweekday,
        AVG(duration) AS duration,
        COUNT(duration) AS num_trips,
        MAX(distance_from_city_center) AS distance_from_city_center
      FROM
        hs
      GROUP BY
        station_name, isweekday
    )
    SELECT *
    EXCEPT (nearest_centroids_distance)
    FROM
    ML.PREDICT(
      MODEL `bqml_tutorial.london_station_clusters`,
      (
        SELECT *
        FROM
          stationstats
        WHERE
          REGEXP_CONTAINS(station_name, 'Kennington')
      ));

结果应如下所示。

ML.PREDICT 结果

BigQuery DataFrame

在尝试此示例之前,请按照《BigQuery 快速入门:使用 BigQuery DataFrames》中的 BigQuery DataFrames 设置说明进行操作。如需了解详情,请参阅 BigQuery DataFrames 参考文档

如需向 BigQuery 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置 ADC


# Select model you'll use for predictions. `read_gbq_model` loads model
# data from BigQuery, but you could also use the `cluster_model` object
# from previous steps.
cluster_model = bpd.read_gbq_model(
    your_model_id,
    # For example: "bqml_tutorial.london_station_clusters",
)

# Use 'contains' function to filter by stations containing the string
# "Kennington".
stationstats = stationstats.loc[
    stationstats["station_name"].str.contains("Kennington")
]

result = cluster_model.predict(stationstats)

# Expected output results:   >>>results.peek(3)
# CENTROID...	NEAREST...	station_name  isweekday	 duration num_trips dist...
# 	1	[{'CENTROID_ID'...	Borough...	  weekday	  1110	    5749	0.13
# 	2	[{'CENTROID_ID'...	Borough...	  weekend	  2125      1774	0.13
# 	1	[{'CENTROID_ID'...	Webber...	  weekday	  795	    6517	0.16
#   3 rows × 7 columns

清理

为避免因本教程中使用的资源导致您的 Google Cloud 账号产生费用,请删除包含这些资源的项目,或者保留项目但删除各个资源。

  • 删除您在教程中创建的项目。
  • 或者,保留项目但删除数据集。

删除数据集

删除项目也将删除项目中的所有数据集和所有表。如果您希望重复使用该项目,则可以删除在本教程中创建的数据集:

  1. 如有必要,请在 Google Cloud 控制台中打开 BigQuery 页面。

    前往 BigQuery 页面

  2. 在导航窗格中,点击您创建的 bqml_tutorial 数据集。

  3. 点击窗口右侧的删除数据集。此操作会删除数据集和模型。

  4. 删除数据集对话框中,通过输入数据集的名称 (bqml_tutorial) 来确认该删除命令,然后点击删除

删除项目

要删除项目,请执行以下操作:

  1. In the Google Cloud console, go to the Manage resources page.

    Go to Manage resources

  2. In the project list, select the project that you want to delete, and then click Delete.
  3. In the dialog, type the project ID, and then click Shut down to delete the project.

后续步骤