Melatih model klasifikasi video

Halaman ini menunjukkan cara melatih model klasifikasi AutoML dari set data video menggunakan Konsol Google Cloud atau Vertex AI API.

Melatih model AutoML

Konsol Google Cloud

  1. Di konsol Google Cloud, di bagian Vertex AI, buka halaman Datasets.

    Buka halaman Datasets

  2. Klik nama set data yang ingin Anda gunakan untuk melatih model agar dapat membuka halaman detailnya.

  3. Klik Train new model.

  4. Masukkan nama tampilan untuk model baru Anda.

  5. Jika Anda ingin menetapkan pemisahan data pelatihan secara manual, luaskan Advanced options dan pilih opsi pemisahan data. Pelajari lebih lanjut.

  6. Klik Continue.

  7. Pilih metode pelatihan model.

    • AutoML adalah pilihan yang tepat untuk berbagai kasus penggunaan.
    • Seq2seq+ adalah pilihan yang tepat untuk eksperimen. Algoritma ini kemungkinan akan berpadu lebih cepat daripada AutoML karena arsitekturnya lebih sederhana dan menggunakan ruang penelusuran yang lebih kecil. Eksperimen kami menemukan bahwa Seq2Seq+ berperforma baik dengan anggaran waktu yang kecil dan pada set data yang berukuran lebih kecil dari 1 GB.
    Klik Continue.

  8. Klik Start Training.

    Pelatihan model dapat memerlukan waktu berjam-jam, bergantung pada ukuran dan kompleksitas data serta anggaran pelatihan, jika Anda menentukannya. Anda dapat menutup tab ini dan kembali membukanya lagi di lain waktu. Anda akan menerima email saat model telah menyelesaikan pelatihan.

    Beberapa menit setelah pelatihan dimulai, Anda dapat memeriksa estimasi jam kerja node pelatihan dari informasi properti model. Jika Anda membatalkan pelatihan, produk saat ini tidak akan dikenai biaya.

API

Pilih tab di bawah ini untuk bahasa atau lingkungan Anda:

REST

Sebelum menggunakan data permintaan mana pun, lakukan penggantian berikut:

  • LOCATION: Region tempat Set Data berada dan Model akan disimpan. Misalnya, us-central1.
  • PROJECT: Project ID Anda.
  • MODEL_DISPLAY_NAME: Nama tampilan untuk model yang baru dilatih.
  • DATASET_ID: ID untuk Set Data pelatihan.
  • Objek filterSplit bersifat opsional; Anda menggunakannya untuk mengontrol pemisahan data. Untuk mengetahui informasi selengkapnya tentang mengontrol pembagian data, lihat Mengontrol pemisahan data menggunakan REST.
  • PROJECT_NUMBER: Nomor project yang dibuat secara otomatis untuk project Anda

Metode HTTP dan URL:

POST https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/trainingPipelines

Meminta isi JSON:

{
    "displayName": "MODE_DISPLAY_NAME",
    "trainingTaskDefinition": "gs://google-cloud-aiplatform/schema/trainingjob/definition/automl_video_classification_1.0.0.yaml",
    "trainingTaskInputs": {},
    "modelToUpload": {"displayName": "MODE_DISPLAY_NAME"},
    "inputDataConfig": {
      "datasetId": "DATASET_ID",
      "filterSplit": {
        "trainingFilter": "labels.ml_use = training",
        "validationFilter": "labels.ml_use = -",
        "testFilter": "labels.ml_use = test"
      }
    }
}

Untuk mengirim permintaan Anda, perluas salah satu opsi berikut:

Anda akan menerima respons JSON yang mirip dengan yang berikut ini:

{
  "name": "projects/PROJECT_NUMBER/locations/us-central1/trainingPipelines/2307109646608891904",
  "displayName": "myModelName",
  "trainingTaskDefinition": "gs://google-cloud-aiplatform/schema/trainingjob/definition/automl_video_classification_1.0.0.yaml",
  "modelToUpload": {
    "displayName": "myModelName"
  },
  "state": "PIPELINE_STATE_PENDING",
  "createTime": "2020-04-18T01:22:57.479336Z",
  "updateTime": "2020-04-18T01:22:57.479336Z"
}

Java

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Java di panduan memulai Vertex AI menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat Dokumentasi referensi API Java Vertex AI.

Untuk melakukan autentikasi ke Vertex AI, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.


import com.google.cloud.aiplatform.util.ValueConverter;
import com.google.cloud.aiplatform.v1.FilterSplit;
import com.google.cloud.aiplatform.v1.FractionSplit;
import com.google.cloud.aiplatform.v1.InputDataConfig;
import com.google.cloud.aiplatform.v1.LocationName;
import com.google.cloud.aiplatform.v1.Model;
import com.google.cloud.aiplatform.v1.PipelineServiceClient;
import com.google.cloud.aiplatform.v1.PipelineServiceSettings;
import com.google.cloud.aiplatform.v1.PredefinedSplit;
import com.google.cloud.aiplatform.v1.TimestampSplit;
import com.google.cloud.aiplatform.v1.TrainingPipeline;
import com.google.rpc.Status;
import java.io.IOException;

public class CreateTrainingPipelineVideoClassificationSample {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String videoClassificationDisplayName =
        "YOUR_TRAINING_PIPELINE_VIDEO_CLASSIFICATION_DISPLAY_NAME";
    String datasetId = "YOUR_DATASET_ID";
    String modelDisplayName = "YOUR_MODEL_DISPLAY_NAME";
    String project = "YOUR_PROJECT_ID";
    createTrainingPipelineVideoClassification(
        videoClassificationDisplayName, datasetId, modelDisplayName, project);
  }

  static void createTrainingPipelineVideoClassification(
      String videoClassificationDisplayName,
      String datasetId,
      String modelDisplayName,
      String project)
      throws IOException {
    PipelineServiceSettings pipelineServiceSettings =
        PipelineServiceSettings.newBuilder()
            .setEndpoint("us-central1-aiplatform.googleapis.com:443")
            .build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (PipelineServiceClient pipelineServiceClient =
        PipelineServiceClient.create(pipelineServiceSettings)) {
      String location = "us-central1";
      LocationName locationName = LocationName.of(project, location);
      String trainingTaskDefinition =
          "gs://google-cloud-aiplatform/schema/trainingjob/definition/"
              + "automl_video_classification_1.0.0.yaml";

      InputDataConfig inputDataConfig =
          InputDataConfig.newBuilder().setDatasetId(datasetId).build();
      Model model = Model.newBuilder().setDisplayName(modelDisplayName).build();

      TrainingPipeline trainingPipeline =
          TrainingPipeline.newBuilder()
              .setDisplayName(videoClassificationDisplayName)
              .setTrainingTaskDefinition(trainingTaskDefinition)
              .setTrainingTaskInputs(ValueConverter.EMPTY_VALUE)
              .setInputDataConfig(inputDataConfig)
              .setModelToUpload(model)
              .build();

      TrainingPipeline trainingPipelineResponse =
          pipelineServiceClient.createTrainingPipeline(locationName, trainingPipeline);

      System.out.println("Create Training Pipeline Video Classification Response");
      System.out.format("\tName: %s\n", trainingPipelineResponse.getName());
      System.out.format("\tDisplay Name: %s\n", trainingPipelineResponse.getDisplayName());
      System.out.format(
          "\tTraining Task Definition: %s\n", trainingPipelineResponse.getTrainingTaskDefinition());
      System.out.format(
          "\tTraining Task Inputs: %s\n", trainingPipelineResponse.getTrainingTaskInputs());
      System.out.format(
          "\tTraining Task Metadata: %s\n", trainingPipelineResponse.getTrainingTaskMetadata());
      System.out.format("\tState: %s\n", trainingPipelineResponse.getState());
      System.out.format("\tCreate Time: %s\n", trainingPipelineResponse.getCreateTime());
      System.out.format("\tStart Time: %s\n", trainingPipelineResponse.getStartTime());
      System.out.format("\tEnd Time: %s\n", trainingPipelineResponse.getEndTime());
      System.out.format("\tUpdate Time: %s\n", trainingPipelineResponse.getUpdateTime());
      System.out.format("\tLabels: %s\n", trainingPipelineResponse.getLabelsMap());

      InputDataConfig inputDataConfigResponse = trainingPipelineResponse.getInputDataConfig();
      System.out.println("\tInput Data Config");
      System.out.format("\t\tDataset Id: %s\n", inputDataConfigResponse.getDatasetId());
      System.out.format(
          "\t\tAnnotations Filter: %s\n", inputDataConfigResponse.getAnnotationsFilter());

      FractionSplit fractionSplit = inputDataConfigResponse.getFractionSplit();
      System.out.println("\t\tFraction Split");
      System.out.format("\t\t\tTraining Fraction: %s\n", fractionSplit.getTrainingFraction());
      System.out.format("\t\t\tValidation Fraction: %s\n", fractionSplit.getValidationFraction());
      System.out.format("\t\t\tTest Fraction: %s\n", fractionSplit.getTestFraction());

      FilterSplit filterSplit = inputDataConfigResponse.getFilterSplit();
      System.out.println("\t\tFilter Split");
      System.out.format("\t\t\tTraining Fraction: %s\n", filterSplit.getTrainingFilter());
      System.out.format("\t\t\tValidation Fraction: %s\n", filterSplit.getValidationFilter());
      System.out.format("\t\t\tTest Fraction: %s\n", filterSplit.getTestFilter());

      PredefinedSplit predefinedSplit = inputDataConfigResponse.getPredefinedSplit();
      System.out.println("\t\tPredefined Split");
      System.out.format("\t\t\tKey: %s\n", predefinedSplit.getKey());

      TimestampSplit timestampSplit = inputDataConfigResponse.getTimestampSplit();
      System.out.println("\t\tTimestamp Split");
      System.out.format("\t\t\tTraining Fraction: %s\n", timestampSplit.getTrainingFraction());
      System.out.format("\t\t\tValidation Fraction: %s\n", timestampSplit.getValidationFraction());
      System.out.format("\t\t\tTest Fraction: %s\n", timestampSplit.getTestFraction());
      System.out.format("\t\t\tKey: %s\n", timestampSplit.getKey());

      Model modelResponse = trainingPipelineResponse.getModelToUpload();
      System.out.println("\tModel To Upload");
      System.out.format("\t\tName: %s\n", modelResponse.getName());
      System.out.format("\t\tDisplay Name: %s\n", modelResponse.getDisplayName());
      System.out.format("\t\tDescription: %s\n", modelResponse.getDescription());
      System.out.format("\t\tMetadata Schema Uri: %s\n", modelResponse.getMetadataSchemaUri());
      System.out.format("\t\tMeta Data: %s\n", modelResponse.getMetadata());
      System.out.format("\t\tTraining Pipeline: %s\n", modelResponse.getTrainingPipeline());
      System.out.format("\t\tArtifact Uri: %s\n", modelResponse.getArtifactUri());
      System.out.format(
          "\t\tSupported Deployment Resources Types: %s\n",
          modelResponse.getSupportedDeploymentResourcesTypesList().toString());
      System.out.format(
          "\t\tSupported Input Storage Formats: %s\n",
          modelResponse.getSupportedInputStorageFormatsList().toString());
      System.out.format(
          "\t\tSupported Output Storage Formats: %s\n",
          modelResponse.getSupportedOutputStorageFormatsList().toString());
      System.out.format("\t\tCreate Time: %s\n", modelResponse.getCreateTime());
      System.out.format("\t\tUpdate Time: %s\n", modelResponse.getUpdateTime());
      System.out.format("\t\tLables: %s\n", modelResponse.getLabelsMap());

      Status status = trainingPipelineResponse.getError();
      System.out.println("\tError");
      System.out.format("\t\tCode: %s\n", status.getCode());
      System.out.format("\t\tMessage: %s\n", status.getMessage());
    }
  }
}

Node.js

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Node.js di Panduan memulai Vertex AI menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat Dokumentasi referensi API Node.js Vertex AI.

Untuk melakukan autentikasi ke Vertex AI, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

/**
 * TODO(developer): Uncomment these variables before running the sample.\
 * (Not necessary if passing values as arguments)
 */

// const datasetId = 'YOUR_DATASET_ID';
// const modelDisplayName = 'YOUR_MODEL_DISPLAY_NAME';
// const trainingPipelineDisplayName = 'YOUR_TRAINING_PIPELINE_DISPLAY_NAME';
// const project = 'YOUR_PROJECT_ID';
// const location = 'YOUR_PROJECT_LOCATION';
const aiplatform = require('@google-cloud/aiplatform');
const {definition} =
  aiplatform.protos.google.cloud.aiplatform.v1.schema.trainingjob;

// Imports the Google Cloud Pipeline Service Client library
const {PipelineServiceClient} = aiplatform.v1;

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: 'us-central1-aiplatform.googleapis.com',
};

// Instantiates a client
const pipelineServiceClient = new PipelineServiceClient(clientOptions);

async function createTrainingPipelineVideoClassification() {
  // Configure the parent resource
  const parent = `projects/${project}/locations/${location}`;
  // Values should match the input expected by your model.
  const trainingTaskInputObj = new definition.AutoMlVideoClassificationInputs(
    {}
  );
  const trainingTaskInputs = trainingTaskInputObj.toValue();

  const modelToUpload = {displayName: modelDisplayName};
  const inputDataConfig = {datasetId: datasetId};
  const trainingPipeline = {
    displayName: trainingPipelineDisplayName,
    trainingTaskDefinition:
      'gs://google-cloud-aiplatform/schema/trainingjob/definition/automl_video_classification_1.0.0.yaml',
    trainingTaskInputs,
    inputDataConfig,
    modelToUpload,
  };
  const request = {
    parent,
    trainingPipeline,
  };

  // Create training pipeline request
  const [response] =
    await pipelineServiceClient.createTrainingPipeline(request);

  console.log('Create training pipeline video classification response');
  console.log(`Name : ${response.name}`);
  console.log('Raw response:');
  console.log(JSON.stringify(response, null, 2));
}
createTrainingPipelineVideoClassification();

Python

Untuk mempelajari cara menginstal atau mengupdate Vertex AI SDK untuk Python, lihat Menginstal Vertex AI SDK untuk Python. Untuk mengetahui informasi selengkapnya, lihat Dokumentasi referensi Python API.

from google.cloud import aiplatform
from google.cloud.aiplatform.gapic.schema import trainingjob


def create_training_pipeline_video_classification_sample(
    project: str,
    display_name: str,
    dataset_id: str,
    model_display_name: str,
    location: str = "us-central1",
    api_endpoint: str = "us-central1-aiplatform.googleapis.com",
):
    # The AI Platform services require regional API endpoints.
    client_options = {"api_endpoint": api_endpoint}
    # Initialize client that will be used to create and send requests.
    # This client only needs to be created once, and can be reused for multiple requests.
    client = aiplatform.gapic.PipelineServiceClient(client_options=client_options)
    training_task_inputs = (
        trainingjob.definition.AutoMlVideoClassificationInputs().to_value()
    )

    training_pipeline = {
        "display_name": display_name,
        "training_task_definition": "gs://google-cloud-aiplatform/schema/trainingjob/definition/automl_video_classification_1.0.0.yaml",
        # Training task inputs are empty for video classification
        "training_task_inputs": training_task_inputs,
        "input_data_config": {"dataset_id": dataset_id},
        "model_to_upload": {"display_name": model_display_name},
    }
    parent = f"projects/{project}/locations/{location}"
    response = client.create_training_pipeline(
        parent=parent, training_pipeline=training_pipeline
    )
    print("response:", response)

Mengontrol pemisahan data menggunakan REST

Anda dapat mengontrol pembagian data pelatihan antara set pelatihan, validasi, dan pengujian. Saat menggunakan Vertex AI API, gunakan objek Split untuk menentukan pembagian data Anda. Objek Split dapat disertakan dalam objek InputConfig sebagai salah satu dari beberapa jenis objek, yang masing-masing memberikan cara berbeda untuk memisahkan data pelatihan. Anda hanya dapat memilih satu metode.

  • FractionSplit:
    • TRAINING_FRACTION: Bagian dari data pelatihan yang akan digunakan untuk set pelatihan.
    • VALIDATION_FRACTION: Bagian dari data pelatihan yang akan digunakan untuk set validasi. Tidak digunakan untuk data video.
    • TEST_FRACTION: Bagian dari data pelatihan yang akan digunakan untuk set pengujian.

    Jika ada satu pecahan yang ditentukan, semua pecahan harus ditentukan. Jumlah pecahan tersebut harus 1,0. Nilai default untuk pecahan berbeda-beda, bergantung pada jenis data Anda. Pelajari lebih lanjut.

    "fractionSplit": {
      "trainingFraction": TRAINING_FRACTION,
      "validationFraction": VALIDATION_FRACTION,
      "testFraction": TEST_FRACTION
    },
    
  • FilterSplit:
    • TRAINING_FILTER: Item data yang cocok dengan filter ini digunakan untuk set pelatihan.
    • VALIDATION_FILTER: Item data yang cocok dengan filter ini digunakan untuk set validasi. Harus berupa "-" untuk data video.
    • TEST_FILTER: Item data yang cocok dengan filter ini digunakan untuk set pengujian.

    Filter ini dapat digunakan dengan label ml_use, atau dengan label apa pun yang Anda terapkan pada data. Pelajari lebih lanjut cara menggunakan label ml-use dan label lainnya untuk memfilter data Anda.

    Contoh berikut menunjukkan cara menggunakan objek filterSplit dengan label ml_use, dengan menyertakan set validasi:

    "filterSplit": {
    "trainingFilter": "labels.aiplatform.googleapis.com/ml_use=training",
    "validationFilter": "labels.aiplatform.googleapis.com/ml_use=validation",
    "testFilter": "labels.aiplatform.googleapis.com/ml_use=test"
    }