Halaman ini menunjukkan cara melatih model klasifikasi AutoML dari set data video menggunakan Konsol Google Cloud atau Vertex AI API.
Melatih model AutoML
Konsol Google Cloud
Di konsol Google Cloud, di bagian Vertex AI, buka halaman Datasets.
Klik nama set data yang ingin Anda gunakan untuk melatih model agar dapat membuka halaman detailnya.
Klik Train new model.
Masukkan nama tampilan untuk model baru Anda.
Jika Anda ingin menetapkan pemisahan data pelatihan secara manual, luaskan Advanced options dan pilih opsi pemisahan data. Pelajari lebih lanjut.
Klik Continue.
Pilih metode pelatihan model.
AutoML
adalah pilihan yang tepat untuk berbagai kasus penggunaan.Seq2seq+
adalah pilihan yang tepat untuk eksperimen. Algoritma ini kemungkinan akan berpadu lebih cepat daripadaAutoML
karena arsitekturnya lebih sederhana dan menggunakan ruang penelusuran yang lebih kecil. Eksperimen kami menemukan bahwa Seq2Seq+ berperforma baik dengan anggaran waktu yang kecil dan pada set data yang berukuran lebih kecil dari 1 GB.
Klik Start Training.
Pelatihan model dapat memerlukan waktu berjam-jam, bergantung pada ukuran dan kompleksitas data serta anggaran pelatihan, jika Anda menentukannya. Anda dapat menutup tab ini dan kembali membukanya lagi di lain waktu. Anda akan menerima email saat model telah menyelesaikan pelatihan.
Beberapa menit setelah pelatihan dimulai, Anda dapat memeriksa estimasi jam kerja node pelatihan dari informasi properti model. Jika Anda membatalkan pelatihan, produk saat ini tidak akan dikenai biaya.
API
Pilih tab di bawah ini untuk bahasa atau lingkungan Anda:
REST
Sebelum menggunakan data permintaan mana pun, lakukan penggantian berikut:
- LOCATION: Region tempat Set Data berada dan Model akan disimpan. Misalnya,
us-central1
. - PROJECT: Project ID Anda.
- MODEL_DISPLAY_NAME: Nama tampilan untuk model yang baru dilatih.
- DATASET_ID: ID untuk Set Data pelatihan.
-
Objek
filterSplit
bersifat opsional; Anda menggunakannya untuk mengontrol pemisahan data. Untuk mengetahui informasi selengkapnya tentang mengontrol pembagian data, lihat Mengontrol pemisahan data menggunakan REST. - PROJECT_NUMBER: Nomor project yang dibuat secara otomatis untuk project Anda
Metode HTTP dan URL:
POST https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/trainingPipelines
Meminta isi JSON:
{ "displayName": "MODE_DISPLAY_NAME", "trainingTaskDefinition": "gs://google-cloud-aiplatform/schema/trainingjob/definition/automl_video_classification_1.0.0.yaml", "trainingTaskInputs": {}, "modelToUpload": {"displayName": "MODE_DISPLAY_NAME"}, "inputDataConfig": { "datasetId": "DATASET_ID", "filterSplit": { "trainingFilter": "labels.ml_use = training", "validationFilter": "labels.ml_use = -", "testFilter": "labels.ml_use = test" } } }
Untuk mengirim permintaan Anda, perluas salah satu opsi berikut:
Anda akan menerima respons JSON yang mirip dengan yang berikut ini:
{ "name": "projects/PROJECT_NUMBER/locations/us-central1/trainingPipelines/2307109646608891904", "displayName": "myModelName", "trainingTaskDefinition": "gs://google-cloud-aiplatform/schema/trainingjob/definition/automl_video_classification_1.0.0.yaml", "modelToUpload": { "displayName": "myModelName" }, "state": "PIPELINE_STATE_PENDING", "createTime": "2020-04-18T01:22:57.479336Z", "updateTime": "2020-04-18T01:22:57.479336Z" }
Java
Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Java di panduan memulai Vertex AI menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat Dokumentasi referensi API Java Vertex AI.
Untuk melakukan autentikasi ke Vertex AI, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.
Node.js
Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Node.js di Panduan memulai Vertex AI menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat Dokumentasi referensi API Node.js Vertex AI.
Untuk melakukan autentikasi ke Vertex AI, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.
Python
Untuk mempelajari cara menginstal atau mengupdate Vertex AI SDK untuk Python, lihat Menginstal Vertex AI SDK untuk Python. Untuk mengetahui informasi selengkapnya, lihat Dokumentasi referensi Python API.
Mengontrol pemisahan data menggunakan REST
Anda dapat mengontrol pembagian data pelatihan antara set pelatihan, validasi, dan pengujian. Saat menggunakan Vertex AI API, gunakan objek Split
untuk menentukan pembagian data Anda. Objek Split
dapat disertakan dalam objek InputConfig
sebagai salah satu dari beberapa jenis objek, yang masing-masing memberikan cara berbeda untuk memisahkan data pelatihan. Anda hanya dapat memilih satu metode.
-
FractionSplit
:- TRAINING_FRACTION: Bagian dari data pelatihan yang akan digunakan untuk set pelatihan.
- VALIDATION_FRACTION: Bagian dari data pelatihan yang akan digunakan untuk set validasi. Tidak digunakan untuk data video.
- TEST_FRACTION: Bagian dari data pelatihan yang akan digunakan untuk set pengujian.
Jika ada satu pecahan yang ditentukan, semua pecahan harus ditentukan. Jumlah pecahan tersebut harus 1,0. Nilai default untuk pecahan berbeda-beda, bergantung pada jenis data Anda. Pelajari lebih lanjut.
"fractionSplit": { "trainingFraction": TRAINING_FRACTION, "validationFraction": VALIDATION_FRACTION, "testFraction": TEST_FRACTION },
-
FilterSplit
: - TRAINING_FILTER: Item data yang cocok dengan filter ini digunakan untuk set pelatihan.
- VALIDATION_FILTER: Item data yang cocok dengan filter ini digunakan untuk set validasi. Harus berupa "-" untuk data video.
- TEST_FILTER: Item data yang cocok dengan filter ini digunakan untuk set pengujian.
Filter ini dapat digunakan dengan label ml_use
, atau dengan label apa pun yang Anda terapkan pada data. Pelajari lebih lanjut cara menggunakan label ml-use dan label lainnya untuk memfilter data Anda.
Contoh berikut menunjukkan cara menggunakan objek filterSplit
dengan label ml_use
, dengan menyertakan set validasi:
"filterSplit": { "trainingFilter": "labels.aiplatform.googleapis.com/ml_use=training", "validationFilter": "labels.aiplatform.googleapis.com/ml_use=validation", "testFilter": "labels.aiplatform.googleapis.com/ml_use=test" }