Vertex AI는 예측을 요청한 후 모델의 목표에 따라 결과를 반환합니다. 분류 모델의 예측은 직접 정의한 라벨에 따라 분류된 동영상의 장면 및 세그먼트를 반환합니다. 각 예측에는 신뢰도 점수가 할당됩니다.
신뢰도 점수는 모델이 각 클래스 또는 라벨을 테스트 항목과 얼마나 밀접하게 연관시키는지를 전달합니다. 숫자가 높을수록 해당 항목에 라벨이 적용되어야 하는 모델의 신뢰도가 높아집니다. 모델의 결과를 수락할 신뢰도 점수를 얼마나 높게 책정할지 결정합니다.
점수 기준점 슬라이더
Google Cloud 콘솔에서 Vertex AI는 모든 클래스나 라벨 또는 개별 클래스나 라벨의 신뢰도 기준을 조정하는 데 사용되는 슬라이더를 제공합니다. 슬라이더는 평가 탭의 모델 세부정보 페이지에서 사용할 수 있습니다. 신뢰도 기준점은 모델이 테스트 항목에 클래스 또는 라벨을 할당하는 데 필요한 신뢰도 수준입니다. 기준점을 조정할 때 모델의 정밀도와 재현율이 어떻게 변경되는지 확인할 수 있습니다. 기준점이 높으면 대개 정밀도가 높아지며 재현율이 낮아집니다.
일괄 예측 출력 예시
다음 샘플은 동영상에서 고양이와 개들을 식별하는 모델의 예측 결과입니다. 결과에 세그먼트, 장면, 1초 간격 분류가 포함됩니다.
{ "instance": { "content": "gs://bucket/video.mp4", "mimeType": "video/mp4", "timeSegmentStart": "1s", "timeSegmentEnd": "5s" } "prediction": [{ "id": "1", "displayName": "cat", "type": "segment-classification", "timeSegmentStart": "1s", "timeSegmentEnd": "5s", "confidence": 0.7 }, { "id": "1", "displayName": "cat", "type": "shot-classification", "timeSegmentStart": "1s", "timeSegmentEnd": "4s", "confidence": 0.9 }, { "id": "2", "displayName": "dog", "type": "shot-classification", "timeSegmentStart": "4s", "timeSegmentEnd": "5s", "confidence": 0.6 }, { "id": "1", "displayName": "cat", "type": "one-sec-interval-classification", "timeSegmentStart": "1s", "timeSegmentEnd": "1s", "confidence": 0.95 }, { "id": "1", "displayName": "cat", "type": "one-sec-interval-classification", "timeSegmentStart": "2s", "timeSegmentEnd": "2s", "confidence": 0.9 }, { "id": "1", "displayName": "cat", "type": "one-sec-interval-classification", "timeSegmentStart": "3s", "timeSegmentEnd": "3s", "confidence": 0.85 }, { "id": "2", "displayName": "dog", "type": "one-sec-interval-classification", "timeSegmentStart": "4s", "timeSegmentEnd": "4s", "confidence": 0.6 }] }