Ottenere previsioni da un modello di riconoscimento delle azioni video

Questa pagina mostra come ottenere previsioni batch dal riconoscimento delle azioni video utilizzando la console Google Cloud o l'API Vertex AI. Le previsioni batch sono richieste asincrone. Le previsioni batch vengono richieste direttamente dal modello senza dover eseguire il deployment del modello su un endpoint.

I modelli video AutoML non supportano le previsioni online.

Generazione di previsioni batch

Per effettuare una richiesta di previsione batch, specifica un'origine di input e un formato di output in cui Vertex AI memorizza i risultati delle predizioni.

Requisiti dei dati di input

L'input per le richieste batch specifica gli elementi da inviare al modello per la previsione. Le previsioni batch per il tipo di modello video AutoML utilizzano un file JSON Lines per specificare un elenco di video per i quali effettuare le previsioni, quindi lo archiviano in un bucket Cloud Storage. Puoi specificare Infinity per il campo timeSegmentEnd per specificare la fine del video. Il seguente esempio mostra una singola riga in un file JSON Lines di input.

{'content': 'gs://sourcebucket/datasets/videos/source_video.mp4', 'mimeType': 'video/mp4', 'timeSegmentStart': '0.0s', 'timeSegmentEnd': '2.366667s'}

Richiedere una previsione batch

Per le richieste di previsione batch, puoi utilizzare la console Google Cloud l'API Vertex AI. In base al numero di input che hai inviato, viene visualizzata una di previsione batch può richiedere del tempo.

Console Google Cloud

Utilizza la console Google Cloud per richiedere una previsione batch.

  1. Nella console Google Cloud, nella sezione Vertex AI, vai a alla pagina Previsioni batch.

    Vai alla pagina Previsioni batch

  2. Fai clic su Crea per aprire la finestra Nuova previsione batch e completa i seguenti passaggi:

    1. Inserisci un nome per la previsione batch.
    2. In Nome modello, seleziona il nome del modello da utilizzare una previsione batch.
    3. In Percorso di origine, specifica la posizione di Cloud Storage in cui in cui si trova il file di input di linee JSON.
    4. Per Percorso di destinazione, specifica una posizione Cloud Storage dove vengono archiviati i risultati della previsione batch. Il formato Output è determinato dall'obiettivo del modello. I modelli AutoML per scopi di immagine generano file JSON Lines.

API

Utilizzare l'API Vertex AI per inviare richieste di previsione batch.

REST

Prima di utilizzare i dati della richiesta, apporta le seguenti sostituzioni:

  • LOCATION_ID: regione in cui è archiviato il modello e viene eseguito il job di previsione batch. Ad esempio, us-central1.
  • PROJECT_ID: il tuo ID progetto
  • BATCH_JOB_NAME: nome visualizzato del job batch
  • MODEL_ID: l'ID del modello da utilizzare per fare previsioni
  • THRESHOLD_VALUE (facoltativo): il modello restituisce solo previsioni che hanno punteggi di confidenza con almeno questo valore
  • URI: URI Cloud Storage in cui si trova il file JSON Lines di input individuarlo.
  • BUCKET: il tuo bucket Cloud Storage
  • PROJECT_NUMBER: il numero di progetto generato automaticamente per il tuo progetto

Metodo HTTP e URL:

POST https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/batchPredictionJobs

Corpo JSON della richiesta:

{
    "displayName": "BATCH_JOB_NAME",
    "model": "projects/PROJECT_ID/locations/LOCATION_ID/models/MODEL_ID",
    "modelParameters": {
      "confidenceThreshold": THRESHOLD_VALUE,
    },
    "inputConfig": {
        "instancesFormat": "jsonl",
        "gcsSource": {
            "uris": ["URI"],
        },
    },
    "outputConfig": {
        "predictionsFormat": "jsonl",
        "gcsDestination": {
            "outputUriPrefix": "OUTPUT_BUCKET",
        },
    },
}

Per inviare la richiesta, scegli una delle seguenti opzioni:

curl

Salva il corpo della richiesta in un file denominato request.json. ed esegui questo comando:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/batchPredictionJobs"

PowerShell

Salva il corpo della richiesta in un file denominato request.json, quindi esegui il comando seguente:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/batchPredictionJobs" | Select-Object -Expand Content

Dovresti ricevere una risposta JSON simile alla seguente:

{
  "name": "projects/PROJECT_NUMBER/locations/us-central1/batchPredictionJobs/BATCH_JOB_ID",
  "displayName": "BATCH_JOB_NAME",
  "model": "projects/PROJECT_NUMBER/locations/us-central1/models/MODEL_ID",
  "inputConfig": {
    "instancesFormat": "jsonl",
    "gcsSource": {
      "uris": [
        "CONTENT"
      ]
    }
  },
  "outputConfig": {
    "predictionsFormat": "jsonl",
    "gcsDestination": {
      "outputUriPrefix": "BUCKET"
    }
  },
  "state": "JOB_STATE_PENDING",
  "createTime": "2020-05-30T02:58:44.341643Z",
  "updateTime": "2020-05-30T02:58:44.341643Z",
  "modelDisplayName": "MODEL_NAME",
  "modelObjective": "MODEL_OBJECTIVE"
}

Puoi eseguire il polling dello stato del job batch utilizzando BATCH_JOB_ID finché il job state non è JOB_STATE_SUCCEEDED.

Java

Prima di provare questo esempio, segui le istruzioni per la configurazione di Java nel Guida rapida di Vertex AI con librerie client. Per ulteriori informazioni, consulta API Java Vertex AI documentazione di riferimento.

Per eseguire l'autenticazione su Vertex AI, configura Credenziali predefinite dell'applicazione. Per maggiori informazioni, consulta Configurare l'autenticazione per un ambiente di sviluppo locale.

import com.google.cloud.aiplatform.util.ValueConverter;
import com.google.cloud.aiplatform.v1.BatchPredictionJob;
import com.google.cloud.aiplatform.v1.GcsDestination;
import com.google.cloud.aiplatform.v1.GcsSource;
import com.google.cloud.aiplatform.v1.JobServiceClient;
import com.google.cloud.aiplatform.v1.JobServiceSettings;
import com.google.cloud.aiplatform.v1.LocationName;
import com.google.cloud.aiplatform.v1.ModelName;
import com.google.protobuf.Value;
import java.io.IOException;

public class CreateBatchPredictionJobVideoActionRecognitionSample {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String project = "PROJECT";
    String displayName = "DISPLAY_NAME";
    String model = "MODEL";
    String gcsSourceUri = "GCS_SOURCE_URI";
    String gcsDestinationOutputUriPrefix = "GCS_DESTINATION_OUTPUT_URI_PREFIX";
    createBatchPredictionJobVideoActionRecognitionSample(
        project, displayName, model, gcsSourceUri, gcsDestinationOutputUriPrefix);
  }

  static void createBatchPredictionJobVideoActionRecognitionSample(
      String project,
      String displayName,
      String model,
      String gcsSourceUri,
      String gcsDestinationOutputUriPrefix)
      throws IOException {
    JobServiceSettings settings =
        JobServiceSettings.newBuilder()
            .setEndpoint("us-central1-aiplatform.googleapis.com:443")
            .build();
    String location = "us-central1";

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (JobServiceClient client = JobServiceClient.create(settings)) {
      Value modelParameters = ValueConverter.EMPTY_VALUE;
      GcsSource gcsSource = GcsSource.newBuilder().addUris(gcsSourceUri).build();
      BatchPredictionJob.InputConfig inputConfig =
          BatchPredictionJob.InputConfig.newBuilder()
              .setInstancesFormat("jsonl")
              .setGcsSource(gcsSource)
              .build();
      GcsDestination gcsDestination =
          GcsDestination.newBuilder().setOutputUriPrefix(gcsDestinationOutputUriPrefix).build();
      BatchPredictionJob.OutputConfig outputConfig =
          BatchPredictionJob.OutputConfig.newBuilder()
              .setPredictionsFormat("jsonl")
              .setGcsDestination(gcsDestination)
              .build();

      String modelName = ModelName.of(project, location, model).toString();

      BatchPredictionJob batchPredictionJob =
          BatchPredictionJob.newBuilder()
              .setDisplayName(displayName)
              .setModel(modelName)
              .setModelParameters(modelParameters)
              .setInputConfig(inputConfig)
              .setOutputConfig(outputConfig)
              .build();
      LocationName parent = LocationName.of(project, location);
      BatchPredictionJob response = client.createBatchPredictionJob(parent, batchPredictionJob);
      System.out.format("response: %s\n", response);
      System.out.format("\tName: %s\n", response.getName());
    }
  }
}

Python

Per scoprire come installare o aggiornare l'SDK Vertex AI per Python, consulta Installare l'SDK Vertex AI per Python. Per ulteriori informazioni, consulta documentazione di riferimento dell'API Python.

def create_batch_prediction_job_sample(
    project: str,
    location: str,
    model_resource_name: str,
    job_display_name: str,
    gcs_source: Union[str, Sequence[str]],
    gcs_destination: str,
    sync: bool = True,
):
    aiplatform.init(project=project, location=location)

    my_model = aiplatform.Model(model_resource_name)

    batch_prediction_job = my_model.batch_predict(
        job_display_name=job_display_name,
        gcs_source=gcs_source,
        gcs_destination_prefix=gcs_destination,
        sync=sync,
    )

    batch_prediction_job.wait()

    print(batch_prediction_job.display_name)
    print(batch_prediction_job.resource_name)
    print(batch_prediction_job.state)
    return batch_prediction_job

Recuperare i risultati delle previsioni batch

Vertex AI invia l'output della previsione batch alla destinazione specificata.

Al termine di un'attività di previsione batch, l'output della previsione viene memorizzato nel bucket Cloud Storage specificato nella richiesta.

Esempi di risultati di previsione batch

Di seguito è riportato un esempio di risultati di previsione batch di un modello di riconoscimento di azioni video.

{
  "instance": {
   "content": "gs://bucket/video.mp4",
    "mimeType": "video/mp4",
    "timeSegmentStart": "1s",
    "timeSegmentEnd": "5s"
  }
  "prediction": [{
    "id": "1",
    "displayName": "swing",
    "timeSegmentStart": "1.2s",
    "timeSegmentEnd": "1.2s",
    "confidence": 0.7
  }, {
    "id": "2",
    "displayName": "jump",
    "timeSegmentStart": "3.4s",
    "timeSegmentEnd": "3.4s",
    "confidence": 0.5
  }]
}