Membuat set data untuk melatih model pengenalan tindakan video

Halaman ini menunjukkan cara membuat set data Vertex AI dari data video sehingga Anda dapat mulai melatih model pengenalan tindakan. Anda dapat membuat set data menggunakan konsol Google Cloud atau Vertex AI API.

Membuat set data kosong, dan mengimpor atau mengaitkan data

Konsol Google Cloud

Gunakan petunjuk berikut untuk membuat set data kosong, lalu impor atau kaitkan data Anda.

  1. Di konsol Google Cloud , di bagian Vertex AI, buka halaman Datasets.

    Buka halaman Datasets

  2. Klik Buat untuk membuka halaman detail pembuatan set data.
  3. Ubah kolom Nama set data untuk membuat nama tampilan set data deskriptif.
  4. Pilih tab Video.
  5. Pilih Pengenalan tindakan video.
  6. Pilih region dari menu drop-down Region.
  7. Klik Create untuk membuat set data kosong, dan lanjutkan ke halaman impor data.
  8. Pilih salah satu opsi berikut dari bagian Select an import method:

    Mengupload data dari komputer Anda

    1. Di bagian Pilih metode impor, pilih untuk mengupload data dari komputer Anda.
    2. Klik Pilih file dan pilih semua file lokal yang akan diupload ke bucket Cloud Storage.
    3. Di bagian Pilih jalur Cloud Storage, klik Cari untuk memilih lokasi bucket Cloud Storage untuk mengupload data.

    Mengupload file impor dari komputer Anda

    1. Klik Upload file impor dari komputer Anda.
    2. Klik Pilih file, lalu pilih file impor lokal yang akan diupload ke bucket Cloud Storage.
    3. Di bagian Pilih jalur Cloud Storage, klik Cari untuk memilih lokasi bucket Cloud Storage tempat mengupload file Anda.

    Memilih file impor dari Cloud Storage

    1. Klik Memilih file import dari Cloud Storage.
    2. Di bagian Pilih jalur Cloud Storage, klik Cari untuk memilih file impor di Cloud Storage.
  9. Klik Lanjutkan.

    Impor data dapat memakan waktu beberapa jam, bergantung pada ukuran data Anda. Anda dapat menutup tab ini dan kembali lagi nanti. Anda akan menerima email saat data Anda selesai diimpor.

API

Untuk membuat model machine learning, Anda harus terlebih dahulu memiliki kumpulan data yang representatif untuk dilatih. Setelah mengimpor data, Anda dapat mengubah dan memulai pelatihan model.

Membuat set data

Gunakan contoh berikut untuk membuat set data bagi data Anda.

REST

Sebelum menggunakan data permintaan mana pun, lakukan penggantian berikut:

  • LOCATION: Region tempat set data akan disimpan. Region ini harus mendukung resource set data. Contoh, us-central1. Lihat Daftar lokasi yang tersedia.
  • PROJECT: Project ID Anda.
  • DATASET_NAME: Nama untuk set data.
  • PROJECT_NUMBER: Nomor project yang dibuat secara otomatis untuk project Anda.

Metode HTTP dan URL:

POST https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/datasets

Isi JSON permintaan:

{
  "display_name": "DATASET_NAME",
  "metadata_schema_uri": "gs://google-cloud-aiplatform/schema/dataset/metadata/video_1.0.0.yaml"
}

Untuk mengirim permintaan Anda, pilih salah satu opsi berikut:

curl

Simpan isi permintaan dalam file bernama request.json, dan jalankan perintah berikut:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/datasets"

PowerShell

Simpan isi permintaan dalam file bernama request.json, dan jalankan perintah berikut:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/datasets" | Select-Object -Expand Content

Anda akan melihat output yang mirip dengan berikut ini: Anda dapat menggunakan OPERATION_ID dalam respons untuk mendapatkan status operasi tersebut.

{
  "name": "projects/PROJECT_NUMBER/locations/LOCATION/operations/OPERATION_ID",
  "metadata": {
    "@type": "type.googleapis.com/google.cloud.aiplatform.v1.CreateDatasetOperationMetadata",
    "genericMetadata": {
      "createTime": "2020-07-07T21:27:35.964882Z",
      "updateTime": "2020-07-07T21:27:35.964882Z"
    }
  }
}

Terraform

Contoh berikut menggunakan resource Terraform google_vertex_ai_dataset untuk membuat set data video bernama video-dataset.

Untuk mempelajari cara menerapkan atau menghapus konfigurasi Terraform, lihat Perintah dasar Terraform.

resource "google_vertex_ai_dataset" "video_dataset" {
  display_name        = "video-dataset"
  metadata_schema_uri = "gs://google-cloud-aiplatform/schema/dataset/metadata/video_1.0.0.yaml"
  region              = "us-central1"
}

Java

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Java di Panduan memulai Vertex AI menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat Dokumentasi referensi API Java Vertex AI.

Untuk melakukan autentikasi ke Vertex AI, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.


import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.aiplatform.v1.CreateDatasetOperationMetadata;
import com.google.cloud.aiplatform.v1.Dataset;
import com.google.cloud.aiplatform.v1.DatasetServiceClient;
import com.google.cloud.aiplatform.v1.DatasetServiceSettings;
import com.google.cloud.aiplatform.v1.LocationName;
import java.io.IOException;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;

public class CreateDatasetVideoSample {

  public static void main(String[] args)
      throws IOException, InterruptedException, ExecutionException, TimeoutException {
    // TODO(developer): Replace these variables before running the sample.
    String project = "YOUR_PROJECT_ID";
    String datasetVideoDisplayName = "YOUR_DATASET_VIDEO_DISPLAY_NAME";
    createDatasetSample(datasetVideoDisplayName, project);
  }

  static void createDatasetSample(String datasetVideoDisplayName, String project)
      throws IOException, InterruptedException, ExecutionException, TimeoutException {
    DatasetServiceSettings datasetServiceSettings =
        DatasetServiceSettings.newBuilder()
            .setEndpoint("us-central1-aiplatform.googleapis.com:443")
            .build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (DatasetServiceClient datasetServiceClient =
        DatasetServiceClient.create(datasetServiceSettings)) {
      String location = "us-central1";
      String metadataSchemaUri =
          "gs://google-cloud-aiplatform/schema/dataset/metadata/video_1.0.0.yaml";
      LocationName locationName = LocationName.of(project, location);
      Dataset dataset =
          Dataset.newBuilder()
              .setDisplayName(datasetVideoDisplayName)
              .setMetadataSchemaUri(metadataSchemaUri)
              .build();

      OperationFuture<Dataset, CreateDatasetOperationMetadata> datasetFuture =
          datasetServiceClient.createDatasetAsync(locationName, dataset);
      System.out.format("Operation name: %s\n", datasetFuture.getInitialFuture().get().getName());
      System.out.println("Waiting for operation to finish...");
      Dataset datasetResponse = datasetFuture.get(300, TimeUnit.SECONDS);

      System.out.println("Create Dataset Video Response");
      System.out.format("Name: %s\n", datasetResponse.getName());
      System.out.format("Display Name: %s\n", datasetResponse.getDisplayName());
      System.out.format("Metadata Schema Uri: %s\n", datasetResponse.getMetadataSchemaUri());
      System.out.format("Metadata: %s\n", datasetResponse.getMetadata());
      System.out.format("Create Time: %s\n", datasetResponse.getCreateTime());
      System.out.format("Update Time: %s\n", datasetResponse.getUpdateTime());
      System.out.format("Labels: %s\n", datasetResponse.getLabelsMap());
    }
  }
}

Node.js

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Node.js di Panduan memulai Vertex AI menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat Dokumentasi referensi API Node.js Vertex AI.

Untuk melakukan autentikasi ke Vertex AI, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

/**
 * TODO(developer): Uncomment these variables before running the sample.\
 * (Not necessary if passing values as arguments)
 */

// const datasetDisplayName = "YOUR_DATASTE_DISPLAY_NAME";
// const project = 'YOUR_PROJECT_ID';
// const location = 'YOUR_PROJECT_LOCATION';

// Imports the Google Cloud Dataset Service Client library
const {DatasetServiceClient} = require('@google-cloud/aiplatform');

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: 'us-central1-aiplatform.googleapis.com',
};

// Instantiates a client
const datasetServiceClient = new DatasetServiceClient(clientOptions);

async function createDatasetVideo() {
  // Configure the parent resource
  const parent = `projects/${project}/locations/${location}`;
  // Configure the dataset resource
  const dataset = {
    displayName: datasetDisplayName,
    metadataSchemaUri:
      'gs://google-cloud-aiplatform/schema/dataset/metadata/video_1.0.0.yaml',
  };
  const request = {
    parent,
    dataset,
  };

  // Create Dataset Request
  const [response] = await datasetServiceClient.createDataset(request);
  console.log(`Long running operation: ${response.name}`);

  // Wait for operation to complete
  await response.promise();
  const result = response.result;

  console.log('Create dataset video response');
  console.log(`Name : ${result.name}`);
  console.log(`Display name : ${result.displayName}`);
  console.log(`Metadata schema uri : ${result.metadataSchemaUri}`);
  console.log(`Metadata : ${JSON.stringify(result.metadata)}`);
  console.log(`Labels : ${JSON.stringify(result.labels)}`);
}
createDatasetVideo();

Python

Untuk mempelajari cara menginstal atau mengupdate Vertex AI SDK untuk Python, lihat Menginstal Vertex AI SDK untuk Python. Untuk mengetahui informasi selengkapnya, lihat Dokumentasi referensi Python API.

Contoh berikut menggunakan Vertex AI SDK untuk Python untuk membuat set data dan mengimpor data. Jika Anda menjalankan kode contoh ini, Anda dapat melewati Bagian Impor data di panduan ini.

Sampel khusus ini mengimpor data untuk klasifikasi. Jika model Anda memiliki tujuan yang berbeda, Anda harus menyesuaikan kodenya.

def create_and_import_dataset_video_sample(
    project: str,
    location: str,
    display_name: str,
    src_uris: Union[str, List[str]],
    sync: bool = True,
):
    aiplatform.init(project=project, location=location)

    ds = aiplatform.VideoDataset.create(
        display_name=display_name,
        gcs_source=src_uris,
        import_schema_uri=aiplatform.schema.dataset.ioformat.video.classification,
        sync=sync,
    )

    ds.wait()

    print(ds.display_name)
    print(ds.resource_name)
    return ds

Mengimpor data

Setelah membuat set data kosong, Anda dapat mengimpor data Anda ke dalam set data tersebut. Jika Anda menggunakan Vertex AI SDK untuk Python untuk membuat set data, Anda mungkin telah mengimpor data saat membuat set data. Jika demikian, Anda dapat melewati bagian ini.

REST

Sebelum menggunakan data permintaan mana pun, lakukan penggantian berikut:

  • LOCATION: Region tempat set data akan disimpan. Contoh, us-central1.
  • PROJECT: Project ID Anda.
  • DATASET_ID: ID set data.
  • IMPORT_FILE_URI: Jalur ke file CSV atau JSON Lines di Cloud Storage yang mencantumkan item data yang disimpan di Cloud Storage untuk digunakan dalam pelatihan model; untuk format dan batasan file impor, lihat Menyiapkan data video.
  • OBJECTIVE: Menetapkan tujuan model antara "klasifikasi", "object_tracking", atau "pengenalan tindakan".
  • PROJECT_NUMBER: Nomor project yang dibuat secara otomatis untuk project Anda.

Metode HTTP dan URL:

POST https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/datasets/DATASET_ID:import

Isi JSON permintaan:

{
  "import_configs": [
    {
      "gcs_source": {
        "uris": "IMPORT_FILE_URI"
      },
     "import_schema_uri" : "gs://google-cloud-aiplatform/schema/dataset/ioformat/automl_video_OBJECTIVE_io_format_1.0.0.yaml"
    }
  ]
}

Untuk mengirim permintaan Anda, pilih salah satu opsi berikut:

curl

Simpan isi permintaan dalam file bernama request.json, dan jalankan perintah berikut:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/datasets/DATASET_ID:import"

PowerShell

Simpan isi permintaan dalam file bernama request.json, dan jalankan perintah berikut:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/datasets/DATASET_ID:import" | Select-Object -Expand Content

Anda akan melihat output yang mirip dengan berikut ini: Anda dapat menggunakan OPERATION_ID dalam respons untuk mendapatkan status operasi tersebut.

{
  "name": "projects/PROJECT_NUMBER/locations/LOCATION/datasets/DATASET_ID/operations/OPERATION_ID",
  "metadata": {
    "@type": "type.googleapis.com/google.cloud.aiplatform.v1.ImportDataOperationMetadata",
    "genericMetadata": {
      "createTime": "2020-10-08T20:32:02.543801Z",
      "updateTime": "2020-10-08T20:32:02.543801Z"
    }
  }
}

Java

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Java di Panduan memulai Vertex AI menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat Dokumentasi referensi API Java Vertex AI.

Untuk melakukan autentikasi ke Vertex AI, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.aiplatform.v1.DatasetName;
import com.google.cloud.aiplatform.v1.DatasetServiceClient;
import com.google.cloud.aiplatform.v1.DatasetServiceSettings;
import com.google.cloud.aiplatform.v1.GcsSource;
import com.google.cloud.aiplatform.v1.ImportDataConfig;
import com.google.cloud.aiplatform.v1.ImportDataOperationMetadata;
import com.google.cloud.aiplatform.v1.ImportDataResponse;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.ExecutionException;

public class ImportDataVideoActionRecognitionSample {

  public static void main(String[] args)
      throws IOException, ExecutionException, InterruptedException {
    // TODO(developer): Replace these variables before running the sample.
    String project = "PROJECT";
    String datasetId = "DATASET_ID";
    String gcsSourceUri = "GCS_SOURCE_URI";
    importDataVideoActionRecognitionSample(project, datasetId, gcsSourceUri);
  }

  static void importDataVideoActionRecognitionSample(
      String project, String datasetId, String gcsSourceUri)
      throws IOException, ExecutionException, InterruptedException {
    DatasetServiceSettings settings =
        DatasetServiceSettings.newBuilder()
            .setEndpoint("us-central1-aiplatform.googleapis.com:443")
            .build();
    String location = "us-central1";

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (DatasetServiceClient client = DatasetServiceClient.create(settings)) {
      GcsSource gcsSource = GcsSource.newBuilder().addUris(gcsSourceUri).build();
      ImportDataConfig importConfig0 =
          ImportDataConfig.newBuilder()
              .setGcsSource(gcsSource)
              .setImportSchemaUri(
                  "gs://google-cloud-aiplatform/schema/dataset/ioformat/"
                      + "video_action_recognition_io_format_1.0.0.yaml")
              .build();
      List<ImportDataConfig> importConfigs = new ArrayList<>();
      importConfigs.add(importConfig0);
      DatasetName name = DatasetName.of(project, location, datasetId);
      OperationFuture<ImportDataResponse, ImportDataOperationMetadata> response =
          client.importDataAsync(name, importConfigs);

      // You can use OperationFuture.getInitialFuture to get a future representing the initial
      // response to the request, which contains information while the operation is in progress.
      System.out.format("Operation name: %s\n", response.getInitialFuture().get().getName());

      // OperationFuture.get() will block until the operation is finished.
      ImportDataResponse importDataResponse = response.get();
      System.out.format("importDataResponse: %s\n", importDataResponse);
    }
  }
}

Python

Untuk mempelajari cara menginstal atau mengupdate Vertex AI SDK untuk Python, lihat Menginstal Vertex AI SDK untuk Python. Untuk mengetahui informasi selengkapnya, lihat Dokumentasi referensi Python API.

def import_data_video_action_recognition_sample(
    project: str,
    location: str,
    dataset_name: str,
    src_uris: Union[str, List[str]],
    sync: bool = True,
):
    aiplatform.init(project=project, location=location)

    ds = aiplatform.VideoDataset(dataset_name=dataset_name)

    ds.import_data(
        gcs_source=src_uris,
        import_schema_uri=aiplatform.schema.dataset.ioformat.video.action_recognition,
        sync=sync,
    )

    ds.wait()

    print(ds.display_name)
    print(ds.resource_name)
    return ds

Mendapatkan status operasi

Beberapa permintaan memulai operasi yang berjalan lama, yang memerlukan waktu beberapa saat untuk selesai. Permintaan ini menampilkan nama operasi, yang dapat Anda gunakan untuk melihat status operasi atau membatalkan operasi. Vertex AI menyediakan metode helper untuk melakukan panggilan terhadap operasi yang berjalan lama. Untuk mengetahui informasi selengkapnya, lihat Bekerja dengan operasi yang berjalan lama.