Há algumas etapas necessárias antes de poder consultar um índice:
- Crie uma
IndexEndpoint
, se necessário, ou reutilize umaIndexEndpoint
atual. - Consiga o código da
IndexEndpoint
. - Implantar o índice no
IndexEndpoint
.
Crie um IndexEndpoint
gcloud
Antes de usar os dados do comando abaixo, faça estas substituições:
- INDEX_ENDPOINT_NAME: nome de exibição do endpoint do índice.
- LOCATION: a região em que você está usando a Vertex AI.
- PROJECT_ID: o Google Cloud ID do projeto.
Execute o seguinte comando:
Linux, macOS ou Cloud Shell
gcloud ai index-endpoints create \ --display-name=INDEX_ENDPOINT_NAME \ --public-endpoint-enabled \ --region=LOCATION \ --project=PROJECT_ID
Windows (PowerShell)
gcloud ai index-endpoints create ` --display-name=INDEX_ENDPOINT_NAME ` --public-endpoint-enabled ` --region=LOCATION ` --project=PROJECT_ID
Windows (cmd.exe)
gcloud ai index-endpoints create ^ --display-name=INDEX_ENDPOINT_NAME ^ --public-endpoint-enabled ^ --region=LOCATION ^ --project=PROJECT_ID
REST
Antes de usar os dados da solicitação abaixo, faça as substituições a seguir:
- INDEX_ENDPOINT_NAME: nome de exibição do endpoint do índice.
- LOCATION: a região em que você está usando a Vertex AI.
- PROJECT_ID: o Google Cloud ID do projeto.
- PROJECT_NUMBER: o número do projeto gerado automaticamente.
Método HTTP e URL:
POST https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/indexEndpoints
Corpo JSON da solicitação:
{ "display_name": "INDEX_ENDPOINT_NAME", "publicEndpointEnabled": "true" }
Para enviar a solicitação, expanda uma destas opções:
Você receberá uma resposta JSON semelhante a esta:
{ "name": "projects/PROJECT_NUMBER/locations/LOCATION/indexEndpoints/INDEX_ENDPOINT_ID/operations/OPERATION_ID", "metadata": { "@type": "type.googleapis.com/google.cloud.aiplatform.v1.CreateIndexEndpointOperationMetadata", "genericMetadata": { "createTime": "2022-01-13T04:09:56.641107Z", "updateTime": "2022-01-13T04:09:56.641107Z" } } }
"done": true
.
Terraform
O exemplo a seguir usa o recurso vertex_ai_index_endpoint
do Terraform para criar um endpoint de índice.
Para saber como aplicar ou remover uma configuração do Terraform, consulte Comandos básicos do Terraform.
SDK da Vertex AI para Python
Para saber como instalar o SDK da Vertex AI para Python, consulte Instalar o SDK da Vertex AI para Python. Saiba mais na documentação de referência da API SDK da Vertex AI para Python.
Console
Use estas instruções para criar um endpoint de índice.
- Na seção Vertex AI do console do Google Cloud, acesse a seção Implantar e usar. Selecione Pesquisa de vetor
- Uma lista dos índices ativos será exibida.
- Na parte superior da página, selecione a guia Endpoints do índice. Os endpoints do índice serão exibidos.
- Clique em Criar novo endpoint de índice. O painel "Criar um endpoint de índice" é aberto.
- Informe um nome de exibição para o endpoint do índice.
- No campo Região, selecione uma região na lista suspensa.
- No campo Acesso, selecione Padrão.
- Clique em Criar.
Implantar um índice em um endpoint
gcloud
O exemplo a seguir usa o comando gcloud ai index-endpoints deploy-index
.
Antes de usar os dados do comando abaixo, faça estas substituições:
- INDEX_ENDPOINT_ID: o ID do endpoint do índice.
- DEPLOYED_INDEX_ID: uma string especificada pelo usuário para identificar de maneira exclusiva o índice implantado. Ela precisa começar com uma letra e conter apenas letras, números ou sublinhados. Consulte DeployedIndex.id para ver as diretrizes de formato.
- DEPLOYED_INDEX_ENDPOINT_NAME: nome de exibição do endpoint do índice implantado.
- INDEX_ID: o ID do índice.
- LOCATION: a região em que você está usando a Vertex AI.
- PROJECT_ID: o Google Cloud ID do projeto.
Execute o seguinte comando:
Linux, macOS ou Cloud Shell
gcloud ai index-endpoints deploy-index INDEX_ENDPOINT_ID \ --deployed-index-id=DEPLOYED_INDEX_ID \ --display-name=DEPLOYED_INDEX_ENDPOINT_NAME \ --index=INDEX_ID \ --region=LOCATION \ --project=PROJECT_ID
Windows (PowerShell)
gcloud ai index-endpoints deploy-index INDEX_ENDPOINT_ID ` --deployed-index-id=DEPLOYED_INDEX_ID ` --display-name=DEPLOYED_INDEX_ENDPOINT_NAME ` --index=INDEX_ID ` --region=LOCATION ` --project=PROJECT_ID
Windows (cmd.exe)
gcloud ai index-endpoints deploy-index INDEX_ENDPOINT_ID ^ --deployed-index-id=DEPLOYED_INDEX_ID ^ --display-name=DEPLOYED_INDEX_ENDPOINT_NAME ^ --index=INDEX_ID ^ --region=LOCATION ^ --project=PROJECT_ID
REST
Antes de usar os dados da solicitação abaixo, faça as substituições a seguir:
- INDEX_ENDPOINT_ID: o ID do endpoint do índice.
- DEPLOYED_INDEX_ID: uma string especificada pelo usuário para identificar de maneira exclusiva o índice implantado. Ela precisa começar com uma letra e conter apenas letras, números ou sublinhados. Consulte DeployedIndex.id para ver as diretrizes de formato.
- DEPLOYED_INDEX_ENDPOINT_NAME: nome de exibição do endpoint do índice implantado.
- INDEX_ID: o ID do índice.
- LOCATION: a região em que você está usando a Vertex AI.
- PROJECT_ID: o Google Cloud ID do projeto.
- PROJECT_NUMBER: o número do projeto gerado automaticamente.
Método HTTP e URL:
POST https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/indexEndpoints/INDEX_ENDPOINT_ID:deployIndex
Corpo JSON da solicitação:
{ "deployedIndex": { "id": "DEPLOYED_INDEX_ID", "index": "projects/PROJECT_ID/locations/LOCATION/indexes/INDEX_ID", "displayName": "DEPLOYED_INDEX_ENDPOINT_NAME" } }
Para enviar a solicitação, expanda uma destas opções:
Você receberá uma resposta JSON semelhante a esta:
{ "name": "projects/PROJECT_NUMBER/locations/LOCATION/indexEndpoints/INDEX_ENDPOINT_ID/operations/OPERATION_ID", "metadata": { "@type": "type.googleapis.com/google.cloud.aiplatform.v1.DeployIndexOperationMetadata", "genericMetadata": { "createTime": "2022-10-19T17:53:16.502088Z", "updateTime": "2022-10-19T17:53:16.502088Z" }, "deployedIndexId": "DEPLOYED_INDEX_ID" } }
Terraform
O exemplo a seguir usa o recurso vertex_ai_index_endpoint_deployed_index
do Terraform para criar um endpoint de índice implantado.
Para saber como aplicar ou remover uma configuração do Terraform, consulte Comandos básicos do Terraform.
SDK da Vertex AI para Python
Para saber como instalar o SDK da Vertex AI para Python, consulte Instalar o SDK da Vertex AI para Python. Saiba mais na documentação de referência da API SDK da Vertex AI para Python.
Console
Use estas instruções para implantar o índice em um endpoint.
- Na seção Vertex AI do console do Google Cloud, acesse a seção Implantar e usar. Selecione Pesquisa de vetor
- Uma lista dos índices ativos será exibida.
- Selecione o nome do índice que você quer implantar. A página de detalhes do índice é aberta.
- Na página de detalhes do índice, clique em Implantar no endpoint. O painel de implantação do índice será aberto.
- Insira um nome de exibição. Ele funciona como um ID e não pode ser atualizado.
- No menu suspenso Endpoint, selecione o endpoint em que você quer implantar esse índice. Observação: o endpoint ficará indisponível se o índice já estiver implantado nele.
- Opcional: no campo Tipo de máquina, selecione "Padrão" ou "Alta memória".
- Opcional. Selecione Ativar escalonamento automático para redimensionar automaticamente o número de nós com base nas demandas das cargas de trabalho. Se o escalonamento automático estiver desativado, o número padrão de réplicas será 2.
- Clique em Implantar para implantar o modelo no endpoint. Observação: a implantação leva cerca de 30 minutos.
Acessar o nome de domínio do índice
Depois de implantar o índice, você precisará do nome de domínio para poder usá-lo
em uma consulta on-line. O valor está disponível em
publicEndpointDomainName
.
curl -H "Content-Type: application/json" -H "Authorization: Bearer `gcloud auth print-access-token`" ${ENDPOINT}/v1/projects/${PROJECT_ID}/locations/${REGION}/indexEndpoints/${INDEX_ENDPOINT_ID}
Exemplo de resposta
{
"name": "projects/181224308459/locations/us-central1/indexEndpoints/3370566089086861312",
"displayName": "public-endpoint-test1",
"deployedIndexes": [
{
"id": "test_index_public1",
"index": "projects/181224308459/locations/us-central1/indexes/7733428228102029312",
"displayName": "test_index_public1",
"createTime": "2023-02-08T23:19:58.026843Z",
"indexSyncTime": "2023-02-09T05:26:19.309417Z",
"automaticResources": {
"minReplicaCount": 2,
"maxReplicaCount": 2
},
"deploymentGroup": "default"
}
],
"etag": "AMEw9yNkXQcSke8iqW9SYxfhj_hT9GCwPt1XlxVwJRSCxiXOYnG4CKrZM_X0oH-XN8tR",
"createTime": "2023-02-08T22:44:20.285382Z",
"updateTime": "2023-02-08T22:44:26.515162Z",
"publicEndpointDomainName": "1957880287.us-central1-181224308459.vdb.vertexai.goog"
}
Ativar o escalonamento automático
O Vector Search oferece suporte ao escalonamento automático, que pode redimensionar automaticamente o número de nós com base nas demandas das cargas de trabalho. Quando a demanda é alta, os nós são adicionados ao pool de nós (não excedem o tamanho máximo designado). Quando a demanda é baixa, o pool de nós volta para um tamanho mínimo designado por você. Para verificar os nós reais em uso e as alterações, monitore as réplicas atuais.
Para ativar o escalonamento automático, especifique maxReplicaCount
e
minReplicaCount
ao implantar o índice:
gcloud
O exemplo a seguir usa o comando
gcloud ai index-endpoints deploy-index
.
Antes de usar os dados do comando abaixo, faça estas substituições:
- INDEX_ENDPOINT_ID: o ID do endpoint do índice.
- DEPLOYED_INDEX_ID: uma string especificada pelo usuário para identificar de maneira exclusiva o índice implantado. Ela precisa começar com uma letra e conter apenas letras, números ou sublinhados. Consulte DeployedIndex.id para ver as diretrizes de formato.
- DEPLOYED_INDEX_NAME: nome de exibição do índice implantado.
- INDEX_ID: o ID do índice.
- MIN_REPLICA_COUNT: o número mínimo de réplicas de máquina em que o índice será implantado sempre. Se especificado, o valor precisa ser igual ou maior que 1.
- MAX_REPLICA_COUNT: número máximo de réplicas de máquina em que o índice pode ser implantado.
- LOCATION: a região em que você está usando a Vertex AI.
- PROJECT_ID: o Google Cloud ID do projeto.
Execute o seguinte comando:
Linux, macOS ou Cloud Shell
gcloud ai index-endpoints deploy-index INDEX_ENDPOINT_ID \ --deployed-index-id=DEPLOYED_INDEX_ID \ --display-name=DEPLOYED_INDEX_NAME \ --index=INDEX_ID \ --min-replica-count=MIN_REPLICA_COUNT \ --max-replica-count=MAX_REPLICA_COUNT \ --region=LOCATION \ --project=PROJECT_ID
Windows (PowerShell)
gcloud ai index-endpoints deploy-index INDEX_ENDPOINT_ID ` --deployed-index-id=DEPLOYED_INDEX_ID ` --display-name=DEPLOYED_INDEX_NAME ` --index=INDEX_ID ` --min-replica-count=MIN_REPLICA_COUNT ` --max-replica-count=MAX_REPLICA_COUNT ` --region=LOCATION ` --project=PROJECT_ID
Windows (cmd.exe)
gcloud ai index-endpoints deploy-index INDEX_ENDPOINT_ID ^ --deployed-index-id=DEPLOYED_INDEX_ID ^ --display-name=DEPLOYED_INDEX_NAME ^ --index=INDEX_ID ^ --min-replica-count=MIN_REPLICA_COUNT ^ --max-replica-count=MAX_REPLICA_COUNT ^ --region=LOCATION ^ --project=PROJECT_ID
REST
Antes de usar os dados da solicitação abaixo, faça as substituições a seguir:
- INDEX_ENDPOINT_ID: o ID do endpoint do índice.
- DEPLOYED_INDEX_ID: uma string especificada pelo usuário para identificar de maneira exclusiva o índice implantado. Ela precisa começar com uma letra e conter apenas letras, números ou sublinhados. Consulte DeployedIndex.id para ver as diretrizes de formato.
- DEPLOYED_INDEX_NAME: nome de exibição do índice implantado.
- INDEX_ID: o ID do índice.
- MIN_REPLICA_COUNT: o número mínimo de réplicas de máquina em que o índice será implantado sempre. Se especificado, o valor precisa ser igual ou maior que 1.
- MAX_REPLICA_COUNT: número máximo de réplicas de máquina em que o índice pode ser implantado.
- LOCATION: a região em que você está usando a Vertex AI.
- PROJECT_ID: o Google Cloud ID do projeto.
- PROJECT_NUMBER: o número do projeto gerado automaticamente.
Método HTTP e URL:
POST https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/indexEndpoints/INDEX_ENDPOINT_ID:deployIndex
Corpo JSON da solicitação:
{ "deployedIndex": { "id": "DEPLOYED_INDEX_ID", "index": "projects/PROJECT_NUMBER/locations/LOCATION/indexes/INDEX_ID", "displayName": "DEPLOYED_INDEX_NAME", "automaticResources": { "minReplicaCount": MIN_REPLICA_COUNT, "maxReplicaCount": MAX_REPLICA_COUNT } } }
Para enviar a solicitação, expanda uma destas opções:
Você receberá uma resposta JSON semelhante a esta:
{ "name": "projects/PROJECT_NUMBER/locations/LOCATION/indexEndpoints/INDEX_ENDPOINT_ID/operations/OPERATION_ID", "metadata": { "@type": "type.googleapis.com/google.cloud.aiplatform.v1.DeployIndexOperationMetadata", "genericMetadata": { "createTime": "2023-10-19T17:53:16.502088Z", "updateTime": "2023-10-19T17:53:16.502088Z" }, "deployedIndexId": "DEPLOYED_INDEX_ID" } }
SDK da Vertex AI para Python
Para saber como instalar o SDK da Vertex AI para Python, consulte Instalar o SDK da Vertex AI para Python. Saiba mais na documentação de referência da API SDK da Vertex AI para Python.
Console
Só é possível ativar o escalonamento automático no console durante a implantação do índice.
- Na seção Vertex AI do console do Google Cloud, acesse a seção Implantar e usar. Selecione Pesquisa de vetor
- Uma lista dos índices ativos será exibida.
- Selecione o nome do índice que você quer implantar. A página de detalhes do índice é aberta.
- Na página de detalhes do índice, clique em Implantar no endpoint. O painel de implantação do índice será aberto.
- Insira um nome de exibição. Ele funciona como um ID e não pode ser atualizado.
- No menu suspenso Endpoint, selecione o endpoint em que você quer implantar esse índice. Observação: o endpoint ficará indisponível se o índice já estiver implantado nele.
- Opcional: no campo Tipo de máquina, selecione "Padrão" ou "Alta memória".
- Opcional. Selecione Ativar escalonamento automático para redimensionar automaticamente o número de nós com base nas demandas das cargas de trabalho. Se o escalonamento automático estiver desativado, o número padrão de réplicas será 2.
- Se
minReplicaCount
emaxReplicaCount
não estiverem definidos, eles serão definidos como 2 por padrão. - Se apenas
maxReplicaCount
for definido,minReplicaCount
será definido como 2 por padrão. - Se apenas
minReplicaCount
estiver definido,maxReplicaCount
será definido como igual aminReplicaCount
.
Modificar um DeployedIndex
Use a API MutateDeployedIndex
para atualizar os recursos de implantação
(por exemplo, minReplicaCount
e maxReplicaCount
) de um índice já implantado.
- Os usuários não terão permissão para alterar o
machineType
após a implantação do índice. - Se
maxReplicaCount
não for especificado na solicitação, oDeployedIndex
continuará usando omaxReplicaCount
já existente.
gcloud
O exemplo a seguir usa o comando
gcloud ai index-endpoints mutate-deployed-index
.
Antes de usar os dados do comando abaixo, faça estas substituições:
- INDEX_ENDPOINT_ID: o ID do endpoint do índice.
- DEPLOYED_INDEX_ID: uma string especificada pelo usuário para identificar de maneira exclusiva o índice implantado. Ela precisa começar com uma letra e conter apenas letras, números ou sublinhados. Consulte DeployedIndex.id para ver as diretrizes de formato.
- MIN_REPLICA_COUNT: o número mínimo de réplicas de máquina em que o índice será implantado sempre. Se especificado, o valor precisa ser igual ou maior que 1.
- MAX_REPLICA_COUNT: número máximo de réplicas de máquina em que o índice pode ser implantado.
- LOCATION: a região em que você está usando a Vertex AI.
- PROJECT_ID: o Google Cloud ID do projeto.
Execute o seguinte comando:
Linux, macOS ou Cloud Shell
gcloud ai index-endpoints mutate-deployed-index INDEX_ENDPOINT_ID \ --deployed-index-id=DEPLOYED_INDEX_ID \ --min-replica-count=MIN_REPLICA_COUNT \ --max-replica-count=MAX_REPLICA_COUNT \ --region=LOCATION \ --project=PROJECT_ID
Windows (PowerShell)
gcloud ai index-endpoints mutate-deployed-index INDEX_ENDPOINT_ID ` --deployed-index-id=DEPLOYED_INDEX_ID ` --min-replica-count=MIN_REPLICA_COUNT ` --max-replica-count=MAX_REPLICA_COUNT ` --region=LOCATION ` --project=PROJECT_ID
Windows (cmd.exe)
gcloud ai index-endpoints mutate-deployed-index INDEX_ENDPOINT_ID ^ --deployed-index-id=DEPLOYED_INDEX_ID ^ --min-replica-count=MIN_REPLICA_COUNT ^ --max-replica-count=MAX_REPLICA_COUNT ^ --region=LOCATION ^ --project=PROJECT_ID
REST
Antes de usar os dados da solicitação abaixo, faça as substituições a seguir:
- INDEX_ENDPOINT_ID: o ID do endpoint do índice.
- DEPLOYED_INDEX_ID: uma string especificada pelo usuário para identificar de maneira exclusiva o índice implantado. Ela precisa começar com uma letra e conter apenas letras, números ou sublinhados. Consulte DeployedIndex.id para ver as diretrizes de formato.
- MIN_REPLICA_COUNT: o número mínimo de réplicas de máquina em que o índice será implantado sempre. Se especificado, o valor precisa ser igual ou maior que 1.
- MAX_REPLICA_COUNT: número máximo de réplicas de máquina em que o índice pode ser implantado.
- LOCATION: a região em que você está usando a Vertex AI.
- PROJECT_ID: o Google Cloud ID do projeto.
- PROJECT_NUMBER: o número do projeto gerado automaticamente.
Método HTTP e URL:
POST https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/indexEndpoints/INDEX_ENDPOINT_ID:mutateDeployedIndex
Corpo JSON da solicitação:
{ "deployedIndex": { "id": "DEPLOYED_INDEX_ID", "index": "projects/PROJECT_ID/locations/LOCATION/indexes/INDEX_ID", "displayName": "DEPLOYED_INDEX_NAME", "min_replica_count": "MIN_REPLICA_COUNT", "max_replica_count": "MAX_REPLICA_COUNT" } }
Para enviar a solicitação, expanda uma destas opções:
Você receberá uma resposta JSON semelhante a esta:
{ "name": "projects/PROJECT_NUMBER/locations/LOCATION/indexEndpoints/INDEX_ENDPOINT_ID/operations/OPERATION_ID", "metadata": { "@type": "type.googleapis.com/google.cloud.aiplatform.v1.DeployIndexOperationMetadata", "genericMetadata": { "createTime": "2020-10-19T17:53:16.502088Z", "updateTime": "2020-10-19T17:53:16.502088Z" }, "deployedIndexId": "DEPLOYED_INDEX_ID" } }
Terraform
Para saber como aplicar ou remover uma configuração do Terraform, consulte Comandos básicos do Terraform. Para mais informações, consulte a documentação de referência do provedor Terraform.
SDK da Vertex AI para Python
Para saber como instalar o SDK da Vertex AI para Python, consulte Instalar o SDK da Vertex AI para Python. Saiba mais na documentação de referência da API SDK da Vertex AI para Python.
Configurações de implantação que afetam o desempenho
As configurações de implantação a seguir podem afetar a latência, a disponibilidade e o custo ao usar a pesquisa de vetor. Essa orientação se aplica à maioria dos casos. No entanto, sempre teste as configurações para garantir que elas funcionem com seu caso de uso.
Configuração | Impacto no desempenho |
---|---|
Tipo de máquina |
A seleção de hardware tem uma interação direta com o tamanho do fragmento selecionado. Dependendo das opções de fragmento especificadas no momento da criação do índice, cada tipo de máquina oferece uma compensação entre desempenho e custo. Consulte a página de preços para determinar o hardware disponível e o preço. Em geral, o desempenho aumenta na seguinte ordem:
|
Contagem mínima de réplicas |
O
Se você tem cargas de trabalho que caem para níveis baixos e depois aumentam rapidamente
para níveis mais altos, defina |
Contagem máxima de réplicas |
maxReplicaCount permite principalmente controlar o custo de uso. É possível
evitar o aumento dos custos além de um determinado limite, mas
permitindo o aumento da latência e reduzindo a disponibilidade.
|
Listar IndexEndpoints
Para listar os recursos do IndexEndpoint
e visualizar as informações de
qualquer instância de DeployedIndex
associada, execute o
código:
gcloud
O exemplo a seguir usa o comando gcloud ai index-endpoints list
.
Antes de usar os dados do comando abaixo, faça estas substituições:
- LOCATION: a região em que você está usando a Vertex AI.
- PROJECT_ID: o Google Cloud ID do projeto.
Execute o seguinte comando:
Linux, macOS ou Cloud Shell
gcloud ai index-endpoints list \ --region=LOCATION \ --project=PROJECT_ID
Windows (PowerShell)
gcloud ai index-endpoints list ` --region=LOCATION ` --project=PROJECT_ID
Windows (cmd.exe)
gcloud ai index-endpoints list ^ --region=LOCATION ^ --project=PROJECT_ID
REST
Antes de usar os dados da solicitação abaixo, faça as substituições a seguir:
- LOCATION: a região em que você está usando a Vertex AI.
- PROJECT_ID: o Google Cloud ID do projeto.
- PROJECT_NUMBER: o número do projeto gerado automaticamente.
Método HTTP e URL:
GET https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/indexEndpoints
Para enviar a solicitação, expanda uma destas opções:
Você receberá uma resposta JSON semelhante a esta:
{ "indexEndpoints": [ { "name": "projects/PROJECT_NUMBER/locations/LOCATION/indexEndpoints/INDEX_ENDPOINT_ID", "displayName": "INDEX_ENDPOINT_DISPLAY_NAME", "deployedIndexes": [ { "id": "DEPLOYED_INDEX_ID", "index": "projects/PROJECT_NUMBER/locations/LOCATION/indexes/INDEX_ID", "displayName": "DEPLOYED_INDEX_DISPLAY_NAME", "createTime": "2021-06-04T02:23:40.178286Z", "privateEndpoints": { "matchGrpcAddress": "GRPC_ADDRESS" }, "indexSyncTime": "2022-01-13T04:22:00.151916Z", "automaticResources": { "minReplicaCount": 2, "maxReplicaCount": 10 } } ], "etag": "AMEw9yP367UitPkLo-khZ1OQvqIK8Q0vLAzZVF7QjdZ5O3l7Zow-mzBo2l6xmiuuMljV", "createTime": "2021-03-17T04:47:28.460373Z", "updateTime": "2021-06-04T02:23:40.930513Z", "network": "VPC_NETWORK_NAME" } ] }
SDK da Vertex AI para Python
Para saber como instalar o SDK da Vertex AI para Python, consulte Instalar o SDK da Vertex AI para Python. Saiba mais na documentação de referência da API SDK da Vertex AI para Python.
Console
Use estas instruções para conferir uma lista dos endpoints de índice.
- Na seção Vertex AI do console do Google Cloud, acesse a seção Implantar e usar. Selecione Pesquisa de vetor
- Na parte de cima da página, selecione a guia Endpoint de índice.
- Todos os endpoints de índice atuais serão exibidos.
Para saber mais, consulte a documentação de referência para
IndexEndpoint
.
Cancelar a implantação de um índice
Para desfazer a implantação de um índice de um endpoint, execute o seguinte código:
gcloud
O exemplo a seguir usa o comando gcloud ai index-endpoints undeploy-index
.
Antes de usar os dados do comando abaixo, faça estas substituições:
- INDEX_ENDPOINT_ID: o ID do endpoint do índice.
- DEPLOYED_INDEX_ID: uma string especificada pelo usuário para identificar de maneira exclusiva o índice implantado. Ela precisa começar com uma letra e conter apenas letras, números ou sublinhados. Consulte DeployedIndex.id para ver as diretrizes de formato.
- LOCATION: a região em que você está usando a Vertex AI.
- PROJECT_ID: o Google Cloud ID do projeto.
Execute o seguinte comando:
Linux, macOS ou Cloud Shell
gcloud ai index-endpoints undeploy-index INDEX_ENDPOINT_ID \ --deployed-index-id=DEPLOYED_INDEX_ID \ --region=LOCATION \ --project=PROJECT_ID
Windows (PowerShell)
gcloud ai index-endpoints undeploy-index INDEX_ENDPOINT_ID ` --deployed-index-id=DEPLOYED_INDEX_ID ` --region=LOCATION ` --project=PROJECT_ID
Windows (cmd.exe)
gcloud ai index-endpoints undeploy-index INDEX_ENDPOINT_ID ^ --deployed-index-id=DEPLOYED_INDEX_ID ^ --region=LOCATION ^ --project=PROJECT_ID
REST
Antes de usar os dados da solicitação abaixo, faça as substituições a seguir:
- INDEX_ENDPOINT_ID: o ID do endpoint do índice.
- DEPLOYED_INDEX_ID: uma string especificada pelo usuário para identificar de maneira exclusiva o índice implantado. Ela precisa começar com uma letra e conter apenas letras, números ou sublinhados. Consulte DeployedIndex.id para ver as diretrizes de formato.
- LOCATION: a região em que você está usando a Vertex AI.
- PROJECT_ID: o Google Cloud ID do projeto.
- PROJECT_NUMBER: o número do projeto gerado automaticamente.
Método HTTP e URL:
POST https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/indexEndpoints/INDEX_ENDPOINT_ID:undeployIndex
Corpo JSON da solicitação:
{ "deployed_index_id": "DEPLOYED_INDEX_ID" }
Para enviar a solicitação, expanda uma destas opções:
Você receberá uma resposta JSON semelhante a esta:
{ "name": "projects/PROJECT_NUMBER/locations/LOCATION/indexEndpoints/INDEX_ENDPOINT_ID/operations/OPERATION_ID", "metadata": { "@type": "type.googleapis.com/google.cloud.aiplatform.v1.UndeployIndexOperationMetadata", "genericMetadata": { "createTime": "2022-01-13T04:09:56.641107Z", "updateTime": "2022-01-13T04:09:56.641107Z" } } }
SDK da Vertex AI para Python
Para saber como instalar o SDK da Vertex AI para Python, consulte Instalar o SDK da Vertex AI para Python. Saiba mais na documentação de referência da API SDK da Vertex AI para Python.
Console
Use estas instruções para cancelar a implantação de um índice de um endpoint.
- Na seção Vertex AI do console do Google Cloud, acesse a seção Implantar e usar. Selecione Pesquisa de vetor
- Uma lista dos índices ativos será exibida.
- Selecione o índice que você quer desfazer a implantação. A página de detalhes do índice é aberta.
- Na seção Índices implantados, identifique a versão do índice que você quer remover.
- Clique no menu de opções que está na mesma linha do índice e selecione Cancelar a implantação.
- Uma tela de confirmação será aberta. Clique em Cancelar a implantação. Observação: pode levar até 30 minutos para que a implantação seja cancelada.
Excluir um IndexEndpoint
Antes de excluir um IndexEndpoint
, é preciso
undeploy de todos os índices implantados no endpoint.
gcloud
O exemplo a seguir usa o comando gcloud ai index-endpoints delete
.
Antes de usar os dados do comando abaixo, faça estas substituições:
- INDEX_ENDPOINT_ID: o ID do endpoint do índice.
- LOCATION: a região em que você está usando a Vertex AI.
- PROJECT_ID: o Google Cloud ID do projeto.
Execute o seguinte comando:
Linux, macOS ou Cloud Shell
gcloud ai index-endpoints delete INDEX_ENDPOINT_ID \ --region=LOCATION \ --project=PROJECT_ID
Windows (PowerShell)
gcloud ai index-endpoints delete INDEX_ENDPOINT_ID ` --region=LOCATION ` --project=PROJECT_ID
Windows (cmd.exe)
gcloud ai index-endpoints delete INDEX_ENDPOINT_ID ^ --region=LOCATION ^ --project=PROJECT_ID
REST
Antes de usar os dados da solicitação abaixo, faça as substituições a seguir:
- INDEX_ENDPOINT_ID: o ID do endpoint do índice.
- LOCATION: a região em que você está usando a Vertex AI.
- PROJECT_ID: o Google Cloud ID do projeto.
- PROJECT_NUMBER: o número do projeto gerado automaticamente.
Método HTTP e URL:
DELETE https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/indexEndpoints/INDEX_ENDPOINT_ID
Para enviar a solicitação, expanda uma destas opções:
Você receberá uma resposta JSON semelhante a esta:
{ "name": "projects/PROJECT_NUMBER/locations/LOCATION/indexEndpoints/INDEX_ENDPOINT_ID/operations/OPERATION_ID", "metadata": { "@type": "type.googleapis.com/google.cloud.aiplatform.v1.DeleteOperationMetadata", "genericMetadata": { "createTime": "2022-01-13T04:36:19.142203Z", "updateTime": "2022-01-13T04:36:19.142203Z" } }, "done": true, "response": { "@type": "type.googleapis.com/google.protobuf.Empty" } }
SDK da Vertex AI para Python
Para saber como instalar o SDK da Vertex AI para Python, consulte Instalar o SDK da Vertex AI para Python. Saiba mais na documentação de referência da API SDK da Vertex AI para Python.
Console
Use estas instruções para deletar um endpoint de índice.
- Na seção Vertex AI do console do Google Cloud, acesse a seção Implantar e usar. Selecione Pesquisa de vetor
- Na parte de cima da página, selecione a guia Endpoint de índice.
- Todos os endpoints de índice atuais serão exibidos.
- Clique no menu de opções que está na mesma linha do índice que você quer excluir e selecione Excluir.
- Uma tela de confirmação será aberta. Clique em Excluir. Seu endpoint de índice foi excluído.