Al termine dell'addestramento del modello di classificazione tabulare AutoML, crea un endpoint ed esegui il deployment del modello nell'endpoint. Dopo aver eseguito il deployment del modello in questo nuovo endpoint, testa del modello richiedendo una previsione.
Carica il modello
Al termine dell'addestramento, il modello viene visualizzato nella scheda Modelli.
Nella console Google Cloud, nella sezione Vertex AI, vai a la pagina Modelli.
Nell'elenco dei modelli, fai clic sul nome del modello addestrato che hai creato in precedenza.
I modelli sono organizzati in versioni. Fai clic sulla versione del modello numero 1.
valuta il modello
Il riquadro Valuta ti consente di comprendere il rendimento del modello rispetto al set di test. Quando hai finito, passa alla parte successiva del tutorial.
Metriche di valutazione
(Facoltativo) Tieni premuto il cursore sopra le icone ?
per scoprire di più su ciascuna metrica di valutazione.
(Facoltativo) Sposta il cursore della soglia di confidenza per vedere in che modo la precisione, il richiamo e i punteggi F1 ne risentiranno.
Matrice di confusione
La matrice di confusione mostra la differenza tra una previsione e il set di test (basato su dati empirici reali).
Ricorda che l'etichetta "1" è la classe negativa (il cliente non ha effettuato la registrazione per un deposito a termine) e "2" è la classe positiva. Il modello probabilmente ha ottenuto un risultato migliore prevedendo la classe negativa rispetto a quella positiva. Magari con tempi di addestramento aggiuntivi, più dati o caratteristiche aggiuntive, potresti migliorare le prestazioni predittive per la classe positiva.
Importanza delle caratteristiche
Importanza delle caratteristiche mostra in che modo ciascuna caratteristica ha influito sull'addestramento del modello: più elevato è il valore, maggiore è stato l'impatto.
Il modello probabilmente mostra che la durata (quanto è durata la comunicazione più recente tra la banca e il cliente, in secondi) ha contribuito in modo significativo al risultato della previsione.
esegui il deployment del modello su un endpoint
Per testare un modello o eseguire previsioni online, devi eseguirne il deployment in un endpoint.
Apri lo strumento Deployment e Test.
In Esegui il deployment del modello, fai clic su Esegui il deployment in un endpoint.
Inserisci
Structured_AutoML_Tutorial
come nome dell'endpoint.Fai clic su Continua.
Mantieni il nodo di calcolo minimo su
1
e non inserire un numero massimo.Seleziona il tipo di macchina
n1-standard-2
.Fai clic su Continua.
Disattiva il monitoraggio del modello per questo endpoint.
Per creare l'endpoint ed eseguire il deployment del modello nell'endpoint, fai clic su Esegui il deployment.
Il deployment del modello richiede circa 5 minuti. Quando l'endpoint è pronto, procedi alla prossima parte del tutorial.
Richiedere una previsione
Ora che hai eseguito il deployment del modello in un endpoint, puoi inviare richieste di previsione. Invece di inviare una richiesta tramite l'API o gcloud, puoi testare il tuo modello su questa pagina.
Nella sezione Testa il tuo modello, vedrai una colonna Valore precompilata. Puoi utilizzare questi valori o inserirne di nuovi.
Nella parte inferiore della sezione, premi Previsione.
Per questo modello, il risultato della previsione di
1
rappresenta un valore risultato: non viene effettuato un bonifico in banca. Un risultato di previsione pari a2
rappresenta un esito positivo: viene effettuato un deposito in banca.Il modello restituirà un punteggio di affidabilità, ovvero il livello di certezza del modello che l'etichetta selezionata è corretta. Il valore predefinito probabilmente ha restituito un punteggio di affidabilità elevato.
(Facoltativo) Prova a modificare il valore della durata in un valore molto più alto e premi di nuovo Previsione.
Passaggi successivi
Per evitare addebiti imprevisti, segui le istruzioni riportate in Pulisci il progetto
Scopri di più sulla valutazione del modello.
Scopri di più sulle previsioni del modello.