Hello 画像データ: プロジェクトと環境の設定

Vertex AI SDK for Python を使用する場合は、クライアントを初期化するサービス アカウントに Vertex AI サービス エージェントroles/aiplatform.serviceAgent)IAM ロールが割り当てられていることを確認します。

Vertex AI を使用するように Google Cloud プロジェクトを設定します。次に、Cloud Storage バケットを作成して、AutoML 画像分類モデルのトレーニングに使用する画像ファイルをコピーします。

このチュートリアルには複数のページが含まれます。

  1. プロジェクトと環境を設定します。

  2. 画像分類データセットを作成して画像をインポートします

  3. AutoML 画像分類モデルをトレーニングします

  4. モデルのパフォーマンスを評価して分析します

  5. エンドポイントにモデルをデプロイして、予測を送信します

  6. プロジェクトをクリーンアップします

各ページは、前のページのチュートリアルの手順をすでに実施していることを前提としています。

始める前に

Vertex AI の機能を使用する前に、次の手順を実施してください。

  1. In the Google Cloud console, go to the project selector page.

    Go to project selector

  2. Select or create a Google Cloud project.

  3. Make sure that billing is enabled for your Google Cloud project.

  4. Cloud Shell を開きます。Cloud Shell は Google Cloud のインタラクティブなシェル環境であり、ウェブブラウザからプロジェクトやリソースを管理できます。
  5. Cloud Shell に移動
  6. Cloud Shell で、現在のプロジェクトを Google Cloud プロジェクト ID に設定し、projectid シェル変数に格納します。
      gcloud config set project PROJECT_ID &&
      projectid=PROJECT_ID &&
      echo $projectid
    PROJECT_ID は実際のプロジェクト ID に置き換えます。プロジェクト ID は Google Cloud コンソールで確認できます。詳細については、プロジェクト ID を確認するをご覧ください。
  7. Enable the IAM, Compute Engine, Notebooks, Cloud Storage, and Vertex AI APIs:

    gcloud services enable iam.googleapis.com  compute.googleapis.com notebooks.googleapis.com storage.googleapis.com aiplatform.googleapis.com
  8. Grant roles to your user account. Run the following command once for each of the following IAM roles: roles/aiplatform.user, roles/storage.admin

    gcloud projects add-iam-policy-binding PROJECT_ID --member="USER_IDENTIFIER" --role=ROLE
    • Replace PROJECT_ID with your project ID.
    • Replace USER_IDENTIFIER with the identifier for your user account. For example, user:myemail@example.com.

    • Replace ROLE with each individual role.
  9. Vertex AI ユーザー(roles/aiplatform.user)IAM ロールにより、Vertex AI 内のすべてのリソースを使用するためのアクセス権が付与されます。ストレージ管理者roles/storage.admin)のロールを使用すると、ドキュメントのトレーニング データセットを Cloud Storage に保存できます。

次のステップ

このチュートリアルの次のページに沿って、Google Cloud コンソールで画像分類データセットを作成し、一般公開の Cloud Storage バケットでホストされている画像をインポートする。