이 튜토리얼에서 사용하는 이미지 파일은 이 Tensorflow 블로그 게시물에 사용된 꽃 데이터 세트에서 가져온 것입니다.
이러한 입력 이미지는 공개 Cloud Storage 버킷에 저장됩니다. 공개적으로 액세스할 수 있는 이 버킷에는 데이터 가져오기에 사용하는 CSV 파일도 포함되어 있습니다.
이 파일에는 두 개의 열이 있습니다. 첫 번째 열에는 Cloud Storage의 이미지 URI, 두 번째 열에는 이미지 라벨이 포함됩니다. 아래는 샘플 행입니다.
Google Cloud 콘솔로 이동하여 데이터 세트를 만들고 이미지 분류 모델을 학습시키는 프로세스를 시작합니다.
해당 메시지가 나타나면 Cloud Storage 버킷에 사용한 프로젝트를 선택합니다.
Vertex AI 페이지 시작하기 페이지에서 데이터 세트 만들기를 클릭합니다.
이 데이터 세트의 이름을 지정합니다(선택 사항).
'데이터 유형 및 목표 선택' 섹션의 이미지 탭에서 radio_button_checked이미지 분류(단일 라벨) 라디오 옵션을 선택합니다. 리전 드롭다운 메뉴에서 US Central을 선택합니다.
만들기를 선택하여 빈 데이터 세트를 만듭니다. 만들기를 선택하면 데이터 가져오기 창으로 이동됩니다.
radio_button_checkedCloud Storage에서 파일 가져오기를 선택하고 이미지 위치 및 라벨 데이터가 있는 CSV 파일의 Cloud Storage URI를 지정합니다. 이 빠른 시작에서 CSV 파일은 gs://cloud-samples-data/ai-platform/flowers/flowers.csv에 있습니다. 다음을 복사하여 '가져오기 파일 경로' 필드에 붙여넣습니다.
[[["이해하기 쉬움","easyToUnderstand","thumb-up"],["문제가 해결됨","solvedMyProblem","thumb-up"],["기타","otherUp","thumb-up"]],[["이해하기 어려움","hardToUnderstand","thumb-down"],["잘못된 정보 또는 샘플 코드","incorrectInformationOrSampleCode","thumb-down"],["필요한 정보/샘플이 없음","missingTheInformationSamplesINeed","thumb-down"],["번역 문제","translationIssue","thumb-down"],["기타","otherDown","thumb-down"]],["최종 업데이트: 2025-09-04(UTC)"],[],[],null,["# Hello image data: Create an image classification dataset and import images\n\nUse the Google Cloud console to create an image classification dataset.\nAfter your dataset is created, use a CSV pointing to images in a public\nCloud Storage bucket to import those images into the dataset.\n\nThis tutorial has several pages:\n\n1. [Set up your project and environment.](/vertex-ai/docs/tutorials/image-classification-automl)\n\n2. Create an image classification dataset, and\n import images.\n\n3. [Train an AutoML image classification\n model.](/vertex-ai/docs/tutorials/image-classification-automl/training)\n\n4. [Evaluate and analyze model performance.](/vertex-ai/docs/tutorials/image-classification-automl/error-analysis)\n\n5. [Deploy a model to an endpoint, and send a\n prediction.](/vertex-ai/docs/tutorials/image-classification-automl/deploy-predict)\n\n6. [Clean up your project.](/vertex-ai/docs/tutorials/image-classification-automl/cleanup)\n\nEach page assumes that you have already performed the instructions from the\nprevious pages of the tutorial.\n\nImage data input file\n---------------------\n\n| **Key point** : A single dataset can be used for multiple objectives. This tutorial focuses on *image classification* (applying a label to an image), but the same data could be used for another objective, such as *object detection* (object identification and labeling).\n\nThe image files you use in this tutorial are from the flower dataset used in\nthis [Tensorflow blog post](https://cloud.google.com/blog/products/gcp/how-to-classify-images-with-tensorflow-using-google-cloud-machine-learning-and-cloud-dataflow).\nThese input images are stored in a public Cloud Storage bucket. This\npublicly-accessible bucket also contains a CSV file you use for data import.\nThis file has two columns:\nthe first column lists an image's URI in Cloud Storage, and the second\ncolumn contains the image's label. Below you can see some sample rows:\n\n`gs://cloud-samples-data/ai-platform/flowers/flowers.csv`: \n\n gs://cloud-samples-data/ai-platform/flowers/daisy/10559679065_50d2b16f6d.jpg,daisy\n gs://cloud-samples-data/ai-platform/flowers/dandelion/10828951106_c3cd47983f.jpg,dandelion\n gs://cloud-samples-data/ai-platform/flowers/roses/14312910041_b747240d56_n.jpg,roses\n gs://cloud-samples-data/ai-platform/flowers/sunflowers/127192624_afa3d9cb84.jpg,sunflowers\n gs://cloud-samples-data/ai-platform/flowers/tulips/13979098645_50b9eebc02_n.jpg,tulips\n\nCreate an image classification dataset and import data\n------------------------------------------------------\n\nVisit the [Google Cloud console](https://console.cloud.google.com/vertex-ai/)\nto begin the process of creating your dataset and training your image\nclassification model.\n\nWhen prompted, make sure to select the project that you used for your Cloud\nStorage bucket.\n\n1. From the Get started with Vertex AI page, click\n **Create dataset**.\n\n2. Specify a name for this dataset (optional).\n\n3. In the Image tab of the \"Select a data type and objective\" section, choose\n the\n radio_button_checked**Image classification (Single-label)**\n radio option. In the Region drop-down menu select **US Central**.\n\n4. Select **Create** to create the empty dataset. After selecting Create you\n will advance to the data import window.\n\n5. Select the radio_button_checked**Select\n import files from Cloud Storage** and specify the Cloud Storage\n URI of the CSV file with the image location and label data. For this\n quickstart, the CSV file is at\n `gs://cloud-samples-data/ai-platform/flowers/flowers.csv`. Copy and paste\n the following into the \"Import file path\" field:\n\n -\n\n ```\n cloud-samples-data/ai-platform/flowers/flowers.csv\n ```\n\n6. Click **Continue** to begin image import. The import process takes a\n few minutes. When it completes, you are taken to the next page that shows\n all of the images identified for your dataset, both labeled and\n unlabeled images.\n\n | When using the indicated flower dataset, you will see several warning alerts. This is purposeful, to show you error messages you may encounter with your own data.\n\n \u003cbr /\u003e\n\nWhat's next\n-----------\n\nFollow the [next page of this tutorial](/vertex-ai/docs/tutorials/image-classification-automl/training) to start an\nAutoML model training job."]]