Ejecuta trabajos de entrenamiento personalizados en un recurso persistente
Organiza tus páginas con colecciones
Guarda y categoriza el contenido según tus preferencias.
En esta página, se muestra cómo ejecutar un trabajo de entrenamiento personalizado en un recurso persistente a través de Google Cloud CLI, el SDK de Vertex AI para Python y la API de REST.
Por lo general, cuando
creas un trabajo de entrenamiento personalizado, debes
especificar los recursos de procesamiento que el trabajo usa para crear y ejecutarse. Después de crear un
recurso persistente, puedes configurar el trabajo de entrenamiento personalizado para que se ejecute en
uno o más grupos de recursos de ese recurso persistente. Ejecutar un trabajo
de entrenamiento personalizado en un recurso persistente reduce de manera significativa el tiempo de inicio del trabajo
que, de lo contrario, es necesario para crear un recurso de procesamiento.
Roles requeridos
Para obtener el permiso que
necesitas para ejecutar trabajos de entrenamiento personalizados en un recurso persistente,
pídele a tu administrador que te otorgue el
rol de IAM de usuario de Vertex AI (roles/aiplatform.user)
en tu proyecto.
Para obtener más información sobre cómo otorgar roles, consulta Administra el acceso a proyectos, carpetas y organizaciones.
Este rol predefinido contiene el permiso aiplatform.customJobs.create, que se requiere para ejecutar trabajos de entrenamiento personalizados en un recurso persistente.
Crea un trabajo de entrenamiento que se ejecute en un recurso persistente
Para crear un trabajo de entrenamiento personalizado que se ejecute en un recurso persistente, realiza las siguientes modificaciones en las instrucciones estándar para crear un trabajo de entrenamiento personalizado:
[[["Fácil de comprender","easyToUnderstand","thumb-up"],["Resolvió mi problema","solvedMyProblem","thumb-up"],["Otro","otherUp","thumb-up"]],[["Difícil de entender","hardToUnderstand","thumb-down"],["Información o código de muestra incorrectos","incorrectInformationOrSampleCode","thumb-down"],["Faltan la información o los ejemplos que necesito","missingTheInformationSamplesINeed","thumb-down"],["Problema de traducción","translationIssue","thumb-down"],["Otro","otherDown","thumb-down"]],["Última actualización: 2025-09-04 (UTC)"],[],[],null,["# Run custom training jobs on a persistent resource\n\nThis page shows you how to run a custom training job on a persistent resource by\nusing the Google Cloud CLI, Vertex AI SDK for Python, and the REST API.\n\nNormally, when you\n[create a custom training job](/vertex-ai/docs/training/create-custom-job), you need to\nspecify compute resources that the job creates and runs on. After you create a\npersistent resource, you can instead configure the custom training job to run on\none or more resource pools of that persistent resource. Running a custom\ntraining job on a persistent resource significantly reduces the job startup time\nthat's otherwise needed for compute resource creation.\n\nRequired roles\n--------------\n\n\nTo get the permission that\nyou need to run custom training jobs on a persistent resource,\n\nask your administrator to grant you the\n\n\n[Vertex AI User](/iam/docs/roles-permissions/aiplatform#aiplatform.user) (`roles/aiplatform.user`)\nIAM role on your project.\n\n\nFor more information about granting roles, see [Manage access to projects, folders, and organizations](/iam/docs/granting-changing-revoking-access).\n\n\nThis predefined role contains the\n` aiplatform.customJobs.create`\npermission,\nwhich is required to\nrun custom training jobs on a persistent resource.\n\n\nYou might also be able to get\nthis permission\nwith [custom roles](/iam/docs/creating-custom-roles) or\nother [predefined roles](/iam/docs/roles-overview#predefined).\n\nCreate a training job that runs on a persistent resource\n--------------------------------------------------------\n\nTo create a custom training jobs that runs on a persistent resource, make the\nfollowing modifications to the standard instructions for\n[creating a custom training job](/vertex-ai/docs/training/create-custom-job): \n\n### gcloud\n\n- Specify the `--persistent-resource-id` flag and set the value to the ID of the persistent resource (\u003cvar translate=\"no\"\u003ePERSISTENT_RESOURCE_ID\u003c/var\u003e) that you want to use.\n- Specify the `--worker-pool-spec` flag such that the values for `machine-type` and `disk-type` matches exactly with a corresponding resource pool from the persistent resource. Specify one `--worker-pool-spec` for single node training and multiple for distributed training.\n- Specify a `replica-count` less than or equal to the `replica-count` or `max-replica-count` of the corresponding resource pool.\n\n### Python\n\nTo learn how to install or update the Vertex AI SDK for Python, see [Install the Vertex AI SDK for Python](/vertex-ai/docs/start/use-vertex-ai-python-sdk).\n\nFor more information, see the\n[Python API reference documentation](/python/docs/reference/aiplatform/latest).\n\n def create_custom_job_on_persistent_resource_sample(\n project: str,\n location: str,\n staging_bucket: str,\n display_name: str,\n container_uri: str,\n persistent_resource_id: str,\n service_account: Optional[str] = None,\n ) -\u003e None:\n aiplatform.init(\n project=project, location=location, staging_bucket=staging_bucket\n )\n\n worker_pool_specs = [{\n \"machine_spec\": {\n \"machine_type\": \"n1-standard-4\",\n \"accelerator_type\": \"NVIDIA_TESLA_K80\",\n \"accelerator_count\": 1,\n },\n \"replica_count\": 1,\n \"container_spec\": {\n \"image_uri\": container_uri,\n \"command\": [],\n \"args\": [],\n },\n }]\n\n custom_job = aiplatform.CustomJob(\n display_name=display_name,\n worker_pool_specs=worker_pool_specs,\n persistent_resource_id=persistent_resource_id,\n )\n\n custom_job.run(service_account=service_account)\n\n### REST\n\n- Specify the `persistent_resource_id` parameter and set the value to the ID of the persistent resource (\u003cvar translate=\"no\"\u003ePERSISTENT_RESOURCE_ID\u003c/var\u003e) that you want to use.\n- Specify the `worker_pool_specs` parameter such that the values of `machine_spec` and `disk_spec` for each resource pool matches exactly with a corresponding resource pool from the persistent resource. Specify one `machine_spec` for single node training and multiple for distributed training.\n- Specify a `replica_count` less than or equal to the `replica_count` or `max_replica_count` of the corresponding resource pool, excluding the replica count of any other jobs running on that resource pool.\n\nWhat's next\n-----------\n\n- [Learn about persistent resource](/vertex-ai/docs/training/persistent-resource-overview).\n- [Create and use a persistent resource](/vertex-ai/docs/training/persistent-resource-create).\n- [Get information about a persistent resource](/vertex-ai/docs/training/persistent-resource-get).\n- [Reboot a persistent resource](/vertex-ai/docs/training/persistent-resource-reboot).\n- [Delete a persistent resource](/vertex-ai/docs/training/persistent-resource-delete)."]]