import com.google.cloud.aiplatform.util.ValueConverter;
import com.google.cloud.aiplatform.v1.DeployedModelRef;
import com.google.cloud.aiplatform.v1.EnvVar;
import com.google.cloud.aiplatform.v1.FilterSplit;
import com.google.cloud.aiplatform.v1.FractionSplit;
import com.google.cloud.aiplatform.v1.InputDataConfig;
import com.google.cloud.aiplatform.v1.LocationName;
import com.google.cloud.aiplatform.v1.Model;
import com.google.cloud.aiplatform.v1.Model.ExportFormat;
import com.google.cloud.aiplatform.v1.ModelContainerSpec;
import com.google.cloud.aiplatform.v1.PipelineServiceClient;
import com.google.cloud.aiplatform.v1.PipelineServiceSettings;
import com.google.cloud.aiplatform.v1.Port;
import com.google.cloud.aiplatform.v1.PredefinedSplit;
import com.google.cloud.aiplatform.v1.PredictSchemata;
import com.google.cloud.aiplatform.v1.TimestampSplit;
import com.google.cloud.aiplatform.v1.TrainingPipeline;
import com.google.cloud.aiplatform.v1.schema.trainingjob.definition.AutoMlTextSentimentInputs;
import com.google.rpc.Status;
import java.io.IOException;
public class CreateTrainingPipelineTextSentimentAnalysisSample {
public static void main(String[] args) throws IOException {
// TODO(developer): Replace these variables before running the sample.
String trainingPipelineDisplayName = "YOUR_TRAINING_PIPELINE_DISPLAY_NAME";
String project = "YOUR_PROJECT_ID";
String datasetId = "YOUR_DATASET_ID";
String modelDisplayName = "YOUR_MODEL_DISPLAY_NAME";
createTrainingPipelineTextSentimentAnalysisSample(
project, trainingPipelineDisplayName, datasetId, modelDisplayName);
}
static void createTrainingPipelineTextSentimentAnalysisSample(
String project, String trainingPipelineDisplayName, String datasetId, String modelDisplayName)
throws IOException {
PipelineServiceSettings pipelineServiceSettings =
PipelineServiceSettings.newBuilder()
.setEndpoint("us-central1-aiplatform.googleapis.com:443")
.build();
// Initialize client that will be used to send requests. This client only needs to be created
// once, and can be reused for multiple requests. After completing all of your requests, call
// the "close" method on the client to safely clean up any remaining background resources.
try (PipelineServiceClient pipelineServiceClient =
PipelineServiceClient.create(pipelineServiceSettings)) {
String location = "us-central1";
String trainingTaskDefinition =
"gs://google-cloud-aiplatform/schema/trainingjob/definition/"
+ "automl_text_sentiment_1.0.0.yaml";
LocationName locationName = LocationName.of(project, location);
AutoMlTextSentimentInputs trainingTaskInputs =
AutoMlTextSentimentInputs.newBuilder()
// Sentiment max must be between 1 and 10 inclusive.
// Higher value means positive sentiment.
.setSentimentMax(4)
.build();
InputDataConfig trainingInputDataConfig =
InputDataConfig.newBuilder().setDatasetId(datasetId).build();
Model model = Model.newBuilder().setDisplayName(modelDisplayName).build();
TrainingPipeline trainingPipeline =
TrainingPipeline.newBuilder()
.setDisplayName(trainingPipelineDisplayName)
.setTrainingTaskDefinition(trainingTaskDefinition)
.setTrainingTaskInputs(ValueConverter.toValue(trainingTaskInputs))
.setInputDataConfig(trainingInputDataConfig)
.setModelToUpload(model)
.build();
TrainingPipeline trainingPipelineResponse =
pipelineServiceClient.createTrainingPipeline(locationName, trainingPipeline);
System.out.println("Create Training Pipeline Text Sentiment Analysis Response");
System.out.format("\tName: %s\n", trainingPipelineResponse.getName());
System.out.format("\tDisplay Name: %s\n", trainingPipelineResponse.getDisplayName());
System.out.format(
"\tTraining Task Definition %s\n", trainingPipelineResponse.getTrainingTaskDefinition());
System.out.format(
"\tTraining Task Inputs: %s\n", trainingPipelineResponse.getTrainingTaskInputs());
System.out.format(
"\tTraining Task Metadata: %s\n", trainingPipelineResponse.getTrainingTaskMetadata());
System.out.format("State: %s\n", trainingPipelineResponse.getState());
System.out.format("\tCreate Time: %s\n", trainingPipelineResponse.getCreateTime());
System.out.format("\tStartTime %s\n", trainingPipelineResponse.getStartTime());
System.out.format("\tEnd Time: %s\n", trainingPipelineResponse.getEndTime());
System.out.format("\tUpdate Time: %s\n", trainingPipelineResponse.getUpdateTime());
System.out.format("\tLabels: %s\n", trainingPipelineResponse.getLabelsMap());
InputDataConfig inputDataConfig = trainingPipelineResponse.getInputDataConfig();
System.out.println("\tInput Data Config");
System.out.format("\t\tDataset Id: %s", inputDataConfig.getDatasetId());
System.out.format("\t\tAnnotations Filter: %s\n", inputDataConfig.getAnnotationsFilter());
FractionSplit fractionSplit = inputDataConfig.getFractionSplit();
System.out.println("\t\tFraction Split");
System.out.format("\t\t\tTraining Fraction: %s\n", fractionSplit.getTrainingFraction());
System.out.format("\t\t\tValidation Fraction: %s\n", fractionSplit.getValidationFraction());
System.out.format("\t\t\tTest Fraction: %s\n", fractionSplit.getTestFraction());
FilterSplit filterSplit = inputDataConfig.getFilterSplit();
System.out.println("\t\tFilter Split");
System.out.format("\t\t\tTraining Filter: %s\n", filterSplit.getTrainingFilter());
System.out.format("\t\t\tValidation Filter: %s\n", filterSplit.getValidationFilter());
System.out.format("\t\t\tTest Filter: %s\n", filterSplit.getTestFilter());
PredefinedSplit predefinedSplit = inputDataConfig.getPredefinedSplit();
System.out.println("\t\tPredefined Split");
System.out.format("\t\t\tKey: %s\n", predefinedSplit.getKey());
TimestampSplit timestampSplit = inputDataConfig.getTimestampSplit();
System.out.println("\t\tTimestamp Split");
System.out.format("\t\t\tTraining Fraction: %s\n", timestampSplit.getTrainingFraction());
System.out.format("\t\t\tValidation Fraction: %s\n", timestampSplit.getValidationFraction());
System.out.format("\t\t\tTest Fraction: %s\n", timestampSplit.getTestFraction());
System.out.format("\t\t\tKey: %s\n", timestampSplit.getKey());
Model modelResponse = trainingPipelineResponse.getModelToUpload();
System.out.println("\tModel To Upload");
System.out.format("\t\tName: %s\n", modelResponse.getName());
System.out.format("\t\tDisplay Name: %s\n", modelResponse.getDisplayName());
System.out.format("\t\tDescription: %s\n", modelResponse.getDescription());
System.out.format("\t\tMetadata Schema Uri: %s\n", modelResponse.getMetadataSchemaUri());
System.out.format("\t\tMetadata: %s\n", modelResponse.getMetadata());
System.out.format("\t\tTraining Pipeline: %s\n", modelResponse.getTrainingPipeline());
System.out.format("\t\tArtifact Uri: %s\n", modelResponse.getArtifactUri());
System.out.format(
"\t\tSupported Deployment Resources Types: %s\n",
modelResponse.getSupportedDeploymentResourcesTypesList());
System.out.format(
"\t\tSupported Input Storage Formats: %s\n",
modelResponse.getSupportedInputStorageFormatsList());
System.out.format(
"\t\tSupported Output Storage Formats: %s\n",
modelResponse.getSupportedOutputStorageFormatsList());
System.out.format("\t\tCreate Time: %s\n", modelResponse.getCreateTime());
System.out.format("\t\tUpdate Time: %s\n", modelResponse.getUpdateTime());
System.out.format("\t\tLabels: %sn\n", modelResponse.getLabelsMap());
PredictSchemata predictSchemata = modelResponse.getPredictSchemata();
System.out.println("\t\tPredict Schemata");
System.out.format("\t\t\tInstance Schema Uri: %s\n", predictSchemata.getInstanceSchemaUri());
System.out.format(
"\t\t\tParameters Schema Uri: %s\n", predictSchemata.getParametersSchemaUri());
System.out.format(
"\t\t\tPrediction Schema Uri: %s\n", predictSchemata.getPredictionSchemaUri());
for (ExportFormat exportFormat : modelResponse.getSupportedExportFormatsList()) {
System.out.println("\t\tSupported Export Format");
System.out.format("\t\t\tId: %s\n", exportFormat.getId());
}
ModelContainerSpec modelContainerSpec = modelResponse.getContainerSpec();
System.out.println("\t\tContainer Spec");
System.out.format("\t\t\tImage Uri: %s\n", modelContainerSpec.getImageUri());
System.out.format("\t\t\tCommand: %s\n", modelContainerSpec.getCommandList());
System.out.format("\t\t\tArgs: %s\n", modelContainerSpec.getArgsList());
System.out.format("\t\t\tPredict Route: %s\n", modelContainerSpec.getPredictRoute());
System.out.format("\t\t\tHealth Route: %s\n", modelContainerSpec.getHealthRoute());
for (EnvVar envVar : modelContainerSpec.getEnvList()) {
System.out.println("\t\t\tEnv");
System.out.format("\t\t\t\tName: %s\n", envVar.getName());
System.out.format("\t\t\t\tValue: %s\n", envVar.getValue());
}
for (Port port : modelContainerSpec.getPortsList()) {
System.out.println("\t\t\tPort");
System.out.format("\t\t\t\tContainer Port: %s\n", port.getContainerPort());
}
for (DeployedModelRef deployedModelRef : modelResponse.getDeployedModelsList()) {
System.out.println("\t\tDeployed Model");
System.out.format("\t\t\tEndpoint: %s\n", deployedModelRef.getEndpoint());
System.out.format("\t\t\tDeployed Model Id: %s\n", deployedModelRef.getDeployedModelId());
}
Status status = trainingPipelineResponse.getError();
System.out.println("\tError");
System.out.format("\t\tCode: %s\n", status.getCode());
System.out.format("\t\tMessage: %s\n", status.getMessage());
}
}
}