Membuat set data untuk klasifikasi pelatihan dan model regresi

Halaman ini menunjukkan cara membuat set data Vertex AI dari data tabel sehingga Anda dapat mulai melatih model regresi dan klasifikasi. Anda dapat membuat set data menggunakan Konsol Google Cloud atau Vertex AI API.

Sebelum memulai

Sebelum dapat membuat set data Vertex AI dari data tabel, Anda harus menyiapkan data terlebih dahulu. Untuk mengetahui detailnya, baca artikel berikut:

Membuat set data kosong dan mengaitkan data yang telah disiapkan

Untuk membuat model machine learning untuk klasifikasi atau regresi, pertama-tama Anda harus memiliki kumpulan data representatif untuk dilatih. Gunakan Konsol Google Cloud atau API untuk mengaitkan data yang sudah disiapkan ke dalam set data. Dengan Mengaitkan data, Anda dapat mengubah dan memulai pelatihan model.

Konsol Google Cloud

  1. Di konsol Google Cloud, di bagian Vertex AI, buka halaman Set Data.

    Buka halaman Datasets

  2. Klik Buat untuk membuka halaman detail pembuatan set data.
  3. Ubah kolom Nama set data untuk membuat nama tampilan set data deskriptif.
  4. Pilih tab Tabel.
  5. Pilih tujuan Regresi/klasifikasi.
  6. Pilih region dari menu drop-down Region.
  7. Jika Anda ingin menggunakan kunci enkripsi yang dikelola pelanggan (CMEK) dengan set data Anda, buka Opsi lanjutan dan sediakan kunci Anda. (Pratinjau)
  8. Klik Buat untuk membuat set data kosong, dan lanjutkan ke tab Sumber.
  9. Pilih salah satu opsi berikut berdasarkan sumber data Anda.

    File CSV di komputer Anda

    1. Klik Upload file CSV dari komputer.
    2. Klik Pilih file dan pilih semua file lokal yang akan diupload ke bucket Cloud Storage.
    3. Di bagian Pilih jalur Cloud Storage, masukkan jalur ke bucket Cloud Storage atau klik Cari untuk memilih lokasi bucket.

    File CSV di Cloud Storage

    1. Klik Pilih file CSV dari Cloud Storage.
    2. Di bagian Pilih file CSV dari Cloud Storage, masukkan jalur ke bucket Cloud Storage atau klik Cari untuk memilih lokasi file CSV.

    Tabel atau tampilan di BigQuery

    1. Klik Pilih tabel atau tampilan dari BigQuery.
    2. Masukkan ID project, set data, dan tabel untuk file input Anda.
  10. Klik Lanjutkan.

    Sumber data dikaitkan dengan set data Anda.

API

Saat membuat set data, Anda juga mengaitkannya dengan sumber datanya. Kode yang diperlukan untuk membuat set data bergantung pada apakah data pelatihan berada di Cloud Storage atau BigQuery. Jika sumber data berada di project yang berbeda, pastikan Anda menyiapkan izin yang diperlukan.

Membuat set data dengan data di Cloud Storage

REST

Anda menggunakan metode datasets.create untuk membuat set data.

Sebelum menggunakan salah satu data permintaan, lakukan penggantian berikut:

  • LOCATION: Region tempat set data akan disimpan. Region ini harus mendukung resource set data. Misalnya, us-central1.
  • PROJECT: Project ID Anda.
  • DATASET_NAME: Nama tampilan untuk set data.
  • METADATA_SCHEMA_URI: URI ke file skema untuk tujuan Anda. gs://google-cloud-aiplatform/schema/dataset/metadata/tabular_1.0.0.yaml
  • URI: Jalur (URI) ke bucket Cloud Storage yang berisi data pelatihan. Bisa lebih dari satu. Setiap URI memiliki format:
    gs://GCSprojectId/bucketName/fileName
    
  • PROJECT_NUMBER: Nomor project yang dibuat secara otomatis untuk project Anda.

Metode HTTP dan URL:

POST https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/datasets

Isi JSON permintaan:

{
  "display_name": "DATASET_NAME",
  "metadata_schema_uri": "METADATA_SCHEMA_URI",
  "metadata": {
    "input_config": {
      "gcs_source": {
        "uri": [URI1, URI2, ...]
      }
    }
  }
}

Untuk mengirim permintaan Anda, pilih salah satu opsi berikut:

curl

Simpan isi permintaan dalam file bernama request.json, dan jalankan perintah berikut:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/datasets"

PowerShell

Simpan isi permintaan dalam file bernama request.json, dan jalankan perintah berikut:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/datasets" | Select-Object -Expand Content

Anda akan menerima respons JSON yang mirip dengan yang berikut ini:

{
  "name": "projects/PROJECT_NUMBER/locations/LOCATION/datasets/DATASET_ID/operations/OPERATION_ID",
  "metadata": {
    "@type": "type.googleapis.com/google.cloud.aiplatform.v1.CreateDatasetOperationMetadata",
    "genericMetadata": {
      "createTime": "2020-07-07T21:27:35.964882Z",
      "updateTime": "2020-07-07T21:27:35.964882Z"
    }
}

Java

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Java di panduan memulai Vertex AI menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat Dokumentasi referensi API Java Vertex AI.

Untuk melakukan autentikasi ke Vertex AI, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.


import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.aiplatform.v1.CreateDatasetOperationMetadata;
import com.google.cloud.aiplatform.v1.Dataset;
import com.google.cloud.aiplatform.v1.DatasetServiceClient;
import com.google.cloud.aiplatform.v1.DatasetServiceSettings;
import com.google.cloud.aiplatform.v1.LocationName;
import com.google.protobuf.Value;
import com.google.protobuf.util.JsonFormat;
import java.io.IOException;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;

public class CreateDatasetTabularGcsSample {

  public static void main(String[] args)
      throws InterruptedException, ExecutionException, TimeoutException, IOException {
    // TODO(developer): Replace these variables before running the sample.
    String project = "YOUR_PROJECT_ID";
    String datasetDisplayName = "YOUR_DATASET_DISPLAY_NAME";
    String gcsSourceUri = "gs://YOUR_GCS_SOURCE_BUCKET/path_to_your_gcs_table/file.csv";
    ;
    createDatasetTableGcs(project, datasetDisplayName, gcsSourceUri);
  }

  static void createDatasetTableGcs(String project, String datasetDisplayName, String gcsSourceUri)
      throws IOException, ExecutionException, InterruptedException, TimeoutException {
    DatasetServiceSettings settings =
        DatasetServiceSettings.newBuilder()
            .setEndpoint("us-central1-aiplatform.googleapis.com:443")
            .build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (DatasetServiceClient datasetServiceClient = DatasetServiceClient.create(settings)) {
      String location = "us-central1";
      String metadataSchemaUri =
          "gs://google-cloud-aiplatform/schema/dataset/metadata/tables_1.0.0.yaml";
      LocationName locationName = LocationName.of(project, location);

      String jsonString =
          "{\"input_config\": {\"gcs_source\": {\"uri\": [\"" + gcsSourceUri + "\"]}}}";
      Value.Builder metaData = Value.newBuilder();
      JsonFormat.parser().merge(jsonString, metaData);

      Dataset dataset =
          Dataset.newBuilder()
              .setDisplayName(datasetDisplayName)
              .setMetadataSchemaUri(metadataSchemaUri)
              .setMetadata(metaData)
              .build();

      OperationFuture<Dataset, CreateDatasetOperationMetadata> datasetFuture =
          datasetServiceClient.createDatasetAsync(locationName, dataset);
      System.out.format("Operation name: %s\n", datasetFuture.getInitialFuture().get().getName());
      System.out.println("Waiting for operation to finish...");
      Dataset datasetResponse = datasetFuture.get(300, TimeUnit.SECONDS);

      System.out.println("Create Dataset Table GCS sample");
      System.out.format("Name: %s\n", datasetResponse.getName());
      System.out.format("Display Name: %s\n", datasetResponse.getDisplayName());
      System.out.format("Metadata Schema Uri: %s\n", datasetResponse.getMetadataSchemaUri());
      System.out.format("Metadata: %s\n", datasetResponse.getMetadata());
    }
  }
}

Node.js

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Node.js di Panduan memulai Vertex AI menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat Dokumentasi referensi API Node.js Vertex AI.

Untuk melakukan autentikasi ke Vertex AI, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

/**
 * TODO(developer): Uncomment these variables before running the sample.\
 * (Not necessary if passing values as arguments)
 */

// const datasetDisplayName = 'YOUR_DATASET_DISPLAY_NAME';
// const gcsSourceUri = 'YOUR_GCS_SOURCE_URI';
// const project = 'YOUR_PROJECT_ID';
// const location = 'YOUR_PROJECT_LOCATION';

// Imports the Google Cloud Dataset Service Client library
const {DatasetServiceClient} = require('@google-cloud/aiplatform');

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: 'us-central1-aiplatform.googleapis.com',
};

// Instantiates a client
const datasetServiceClient = new DatasetServiceClient(clientOptions);

async function createDatasetTabularGcs() {
  // Configure the parent resource
  const parent = `projects/${project}/locations/${location}`;
  const metadata = {
    structValue: {
      fields: {
        inputConfig: {
          structValue: {
            fields: {
              gcsSource: {
                structValue: {
                  fields: {
                    uri: {
                      listValue: {
                        values: [{stringValue: gcsSourceUri}],
                      },
                    },
                  },
                },
              },
            },
          },
        },
      },
    },
  };
  // Configure the dataset resource
  const dataset = {
    displayName: datasetDisplayName,
    metadataSchemaUri:
      'gs://google-cloud-aiplatform/schema/dataset/metadata/tabular_1.0.0.yaml',
    metadata: metadata,
  };
  const request = {
    parent,
    dataset,
  };

  // Create dataset request
  const [response] = await datasetServiceClient.createDataset(request);
  console.log(`Long running operation : ${response.name}`);

  // Wait for operation to complete
  await response.promise();
  const result = response.result;

  console.log('Create dataset tabular gcs response');
  console.log(`\tName : ${result.name}`);
  console.log(`\tDisplay name : ${result.displayName}`);
  console.log(`\tMetadata schema uri : ${result.metadataSchemaUri}`);
  console.log(`\tMetadata : ${JSON.stringify(result.metadata)}`);
}
createDatasetTabularGcs();

Python

Untuk mempelajari cara menginstal atau mengupdate Vertex AI SDK untuk Python, lihat Menginstal Vertex AI SDK untuk Python. Untuk mengetahui informasi selengkapnya, lihat Dokumentasi referensi Python API.

def create_and_import_dataset_tabular_gcs_sample(
    display_name: str,
    project: str,
    location: str,
    gcs_source: Union[str, List[str]],
):

    aiplatform.init(project=project, location=location)

    dataset = aiplatform.TabularDataset.create(
        display_name=display_name,
        gcs_source=gcs_source,
    )

    dataset.wait()

    print(f'\tDataset: "{dataset.display_name}"')
    print(f'\tname: "{dataset.resource_name}"')

Membuat set data dengan data di BigQuery

REST

Anda menggunakan metode datasets.create untuk membuat set data.

Sebelum menggunakan salah satu data permintaan, lakukan penggantian berikut:

  • LOCATION: Region tempat set data akan disimpan. Region ini harus mendukung resource set data. Misalnya, us-central1.
  • PROJECT: Project ID Anda.
  • DATASET_NAME: Nama tampilan untuk set data.
  • METADATA_SCHEMA_URI: URI ke file skema untuk tujuan Anda. gs://google-cloud-aiplatform/schema/dataset/metadata/tabular_1.0.0.yaml
  • URI: Jalur ke tabel BigQuery yang berisi data pelatihan. Di dalam formulir:
    bq://bqprojectId.bqDatasetId.bqTableId
    
  • PROJECT_NUMBER: Nomor project yang dibuat secara otomatis untuk project Anda.

Metode HTTP dan URL:

POST https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/datasets

Isi JSON permintaan:

{
  "display_name": "DATASET_NAME",
  "metadata_schema_uri": "METADATA_SCHEMA_URI",
  "metadata": {
    "input_config": {
      "bigquery_source" :{
        "uri": "URI
      }
    }
  }
}

Untuk mengirim permintaan Anda, pilih salah satu opsi berikut:

curl

Simpan isi permintaan dalam file bernama request.json, dan jalankan perintah berikut:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/datasets"

PowerShell

Simpan isi permintaan dalam file bernama request.json, dan jalankan perintah berikut:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/datasets" | Select-Object -Expand Content

Anda akan menerima respons JSON yang mirip dengan yang berikut ini:

{
  "name": "projects/PROJECT_NUMBER/locations/LOCATION/datasets/DATASET_ID/operations/OPERATION_ID",
  "metadata": {
    "@type": "type.googleapis.com/google.cloud.aiplatform.v1.CreateDatasetOperationMetadata",
    "genericMetadata": {
      "createTime": "2020-07-07T21:27:35.964882Z",
      "updateTime": "2020-07-07T21:27:35.964882Z"
    }
}

Java

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Java di panduan memulai Vertex AI menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat Dokumentasi referensi API Java Vertex AI.

Untuk melakukan autentikasi ke Vertex AI, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.


import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.aiplatform.v1.CreateDatasetOperationMetadata;
import com.google.cloud.aiplatform.v1.Dataset;
import com.google.cloud.aiplatform.v1.DatasetServiceClient;
import com.google.cloud.aiplatform.v1.DatasetServiceSettings;
import com.google.cloud.aiplatform.v1.LocationName;
import com.google.protobuf.Value;
import com.google.protobuf.util.JsonFormat;
import java.io.IOException;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;

public class CreateDatasetTabularBigquerySample {

  public static void main(String[] args)
      throws InterruptedException, ExecutionException, TimeoutException, IOException {
    // TODO(developer): Replace these variables before running the sample.
    String project = "YOUR_PROJECT_ID";
    String bigqueryDisplayName = "YOUR_DATASET_DISPLAY_NAME";
    String bigqueryUri =
        "bq://YOUR_GOOGLE_CLOUD_PROJECT_ID.BIGQUERY_DATASET_ID.BIGQUERY_TABLE_OR_VIEW_ID";
    createDatasetTableBigquery(project, bigqueryDisplayName, bigqueryUri);
  }

  static void createDatasetTableBigquery(
      String project, String bigqueryDisplayName, String bigqueryUri)
      throws IOException, ExecutionException, InterruptedException, TimeoutException {
    DatasetServiceSettings settings =
        DatasetServiceSettings.newBuilder()
            .setEndpoint("us-central1-aiplatform.googleapis.com:443")
            .build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (DatasetServiceClient datasetServiceClient = DatasetServiceClient.create(settings)) {
      String location = "us-central1";
      String metadataSchemaUri =
          "gs://google-cloud-aiplatform/schema/dataset/metadata/tables_1.0.0.yaml";
      LocationName locationName = LocationName.of(project, location);

      String jsonString =
          "{\"input_config\": {\"bigquery_source\": {\"uri\": \"" + bigqueryUri + "\"}}}";
      Value.Builder metaData = Value.newBuilder();
      JsonFormat.parser().merge(jsonString, metaData);

      Dataset dataset =
          Dataset.newBuilder()
              .setDisplayName(bigqueryDisplayName)
              .setMetadataSchemaUri(metadataSchemaUri)
              .setMetadata(metaData)
              .build();

      OperationFuture<Dataset, CreateDatasetOperationMetadata> datasetFuture =
          datasetServiceClient.createDatasetAsync(locationName, dataset);
      System.out.format("Operation name: %s\n", datasetFuture.getInitialFuture().get().getName());
      System.out.println("Waiting for operation to finish...");
      Dataset datasetResponse = datasetFuture.get(300, TimeUnit.SECONDS);

      System.out.println("Create Dataset Table Bigquery sample");
      System.out.format("Name: %s\n", datasetResponse.getName());
      System.out.format("Display Name: %s\n", datasetResponse.getDisplayName());
      System.out.format("Metadata Schema Uri: %s\n", datasetResponse.getMetadataSchemaUri());
      System.out.format("Metadata: %s\n", datasetResponse.getMetadata());
    }
  }
}

Node.js

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Node.js di Panduan memulai Vertex AI menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat Dokumentasi referensi API Node.js Vertex AI.

Untuk melakukan autentikasi ke Vertex AI, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

/**
 * TODO(developer): Uncomment these variables before running the sample.\
 * (Not necessary if passing values as arguments)
 */

// const datasetDisplayName = 'YOUR_DATASET_DISPLAY_NAME';
// const bigquerySourceUri = 'YOUR_BIGQUERY_SOURCE_URI';
// const project = 'YOUR_PROJECT_ID';
// const location = 'YOUR_PROJECT_LOCATION';

// Imports the Google Cloud Dataset Service Client library
const {DatasetServiceClient} = require('@google-cloud/aiplatform');

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: 'us-central1-aiplatform.googleapis.com',
};

// Instantiates a client
const datasetServiceClient = new DatasetServiceClient(clientOptions);

async function createDatasetTabularBigquery() {
  // Configure the parent resource
  const parent = `projects/${project}/locations/${location}`;
  const metadata = {
    structValue: {
      fields: {
        inputConfig: {
          structValue: {
            fields: {
              bigquerySource: {
                structValue: {
                  fields: {
                    uri: {
                      listValue: {
                        values: [{stringValue: bigquerySourceUri}],
                      },
                    },
                  },
                },
              },
            },
          },
        },
      },
    },
  };
  // Configure the dataset resource
  const dataset = {
    displayName: datasetDisplayName,
    metadataSchemaUri:
      'gs://google-cloud-aiplatform/schema/dataset/metadata/tabular_1.0.0.yaml',
    metadata: metadata,
  };
  const request = {
    parent,
    dataset,
  };

  // Create dataset request
  const [response] = await datasetServiceClient.createDataset(request);
  console.log(`Long running operation : ${response.name}`);

  // Wait for operation to complete
  await response.promise();
  const result = response.result;

  console.log('Create dataset tabular bigquery response');
  console.log(`\tName : ${result.name}`);
  console.log(`\tDisplay name : ${result.displayName}`);
  console.log(`\tMetadata schema uri : ${result.metadataSchemaUri}`);
  console.log(`\tMetadata : ${JSON.stringify(result.metadata)}`);
}
createDatasetTabularBigquery();

Python

Untuk mempelajari cara menginstal atau mengupdate Vertex AI SDK untuk Python, lihat Menginstal Vertex AI SDK untuk Python. Untuk mengetahui informasi selengkapnya, lihat Dokumentasi referensi Python API.

def create_and_import_dataset_tabular_bigquery_sample(
    display_name: str,
    project: str,
    location: str,
    bq_source: str,
):

    aiplatform.init(project=project, location=location)

    dataset = aiplatform.TabularDataset.create(
        display_name=display_name,
        bq_source=bq_source,
    )

    dataset.wait()

    print(f'\tDataset: "{dataset.display_name}"')
    print(f'\tname: "{dataset.resource_name}"')

Mendapatkan status operasi

Beberapa permintaan memulai operasi yang berjalan lama, yang memerlukan waktu beberapa saat untuk selesai. Permintaan ini menampilkan nama operasi, yang dapat Anda gunakan untuk melihat status operasi atau membatalkan operasi. Vertex AI menyediakan metode helper untuk melakukan panggilan terhadap operasi yang berjalan lama. Untuk mengetahui informasi selengkapnya, lihat Bekerja dengan operasi yang berjalan lama.

Langkah berikutnya