학습 분류 및 회귀 모델의 데이터 세트 만들기

이 페이지에서는 테이블 형식 데이터에서 Vertex AI 데이터 세트를 만들어 학습 분류 및 회귀 모델을 시작할 수 있는 방법을 보여줍니다. Google Cloud 콘솔 또는 Vertex AI API를 사용하여 데이터 세트를 만들 수 있습니다.

시작하기 전에

테이블 형식 데이터에서 Vertex AI 데이터 세트를 만들려면 먼저 데이터를 준비해야 합니다. 자세한 내용은 다음을 참고하세요.

빈 데이터 세트를 만들고 준비된 데이터 연결

분류 또는 회귀용 머신러닝 모델을 만들려면 먼저 학습시킬 데이터의 대표 컬렉션이 있어야 합니다. Google Cloud 콘솔 또는 API를 사용하여 준비된 데이터를 데이터 세트에 연결합니다. 데이터를 연결한 후 적절히 수정하여 모델 학습을 시작할 수 있습니다.

Google Cloud 콘솔

  1. Google Cloud 콘솔의 Vertex AI 섹션에서 데이터 세트 페이지로 이동합니다.

    데이터 세트 페이지로 이동

  2. 만들기를 클릭하여 데이터 세트 만들기 세부정보 페이지를 엽니다.
  3. 데이터 세트 이름 필드를 수정하여 데이터 세트를 설명하는 표시 이름을 지정합니다.
  4. 표 형식 탭을 선택합니다.
  5. 회귀/분류 목표를 선택합니다.
  6. 리전 드롭다운 목록에서 리전을 선택합니다.
  7. 데이터 세트에서 고객 관리 암호화 키(CMEK)를 사용하려면 고급 옵션을 열고 키를 입력합니다. (미리보기)
  8. 만들기를 클릭하여 빈 데이터 세트를 만들고 소스 탭으로 이동합니다.
  9. 데이터 소스에 따라 다음 옵션 중 하나를 선택합니다.

    컴퓨터의 CSV 파일

    1. 컴퓨터에서 CSV 파일 업로드를 클릭합니다.
    2. 파일 선택을 클릭하고 Cloud Storage 버킷에 업로드할 모든 로컬 파일을 선택합니다.
    3. Cloud Storage 경로 선택 섹션에서 Cloud Storage 버킷 경로를 입력하거나 탐색을 클릭하여 버킷 위치를 선택합니다.

    Cloud Storage의 CSV 파일

    1. Cloud Storage에서 CSV 파일 선택을 클릭합니다.
    2. Cloud Storage에서 CSV 파일 선택 섹션에서 Cloud Storage 버킷 경로를 입력하거나 탐색을 클릭하여 CSV 파일의 위치를 선택합니다.

    BigQuery의 테이블 또는 뷰

    1. BigQuery에서 테이블 또는 뷰 선택을 클릭합니다.
    2. 입력 파일의 프로젝트, 데이터 세트, 테이블 ID를 입력합니다.
  10. 계속을 클릭합니다.

    데이터 소스가 데이터 세트와 연결되어 있습니다.

API

데이터 세트를 만들면 해당 데이터 세트를 데이터 소스와도 연결할 수 있습니다. 데이터 세트를 만드는 데 필요한 코드는 학습 데이터가 Cloud Storage 또는 BigQuery에 있는지에 따라 다릅니다. 데이터 소스가 다른 프로젝트에 있는 경우 필수 권한 설정이 필요합니다.

Cloud Storage에서 데이터가 포함된 데이터 세트 만들기

REST

datasets.create 메서드를 사용하여 데이터 세트를 만듭니다.

요청 데이터를 사용하기 전에 다음을 바꿉니다.

  • LOCATION: 데이터 세트가 저장될 리전. 데이터 세트 리소스를 지원하는 리전이어야 합니다. 예를 들면 us-central1입니다.
  • PROJECT: 프로젝트 ID
  • DATASET_NAME: 데이터 세트의 표시 이름입니다.
  • METADATA_SCHEMA_URI: 목표의 스키마 파일에 대한 URI gs://google-cloud-aiplatform/schema/dataset/metadata/tabular_1.0.0.yaml
  • URI: 학습 데이터가 포함된 Cloud Storage 버킷의 경로(URI). 두 개 이상 있을 수 있습니다. 각 URI의 형식은 다음과 같습니다.
    gs://GCSprojectId/bucketName/fileName
    
  • PROJECT_NUMBER: 프로젝트의 자동으로 생성된 프로젝트 번호

HTTP 메서드 및 URL:

POST https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/datasets

JSON 요청 본문:

{
  "display_name": "DATASET_NAME",
  "metadata_schema_uri": "METADATA_SCHEMA_URI",
  "metadata": {
    "input_config": {
      "gcs_source": {
        "uri": [URI1, URI2, ...]
      }
    }
  }
}

요청을 보내려면 다음 옵션 중 하나를 선택합니다.

curl

요청 본문을 request.json 파일에 저장하고 다음 명령어를 실행합니다.

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/datasets"

PowerShell

요청 본문을 request.json 파일에 저장하고 다음 명령어를 실행합니다.

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/datasets" | Select-Object -Expand Content

다음과 비슷한 JSON 응답이 표시됩니다.

{
  "name": "projects/PROJECT_NUMBER/locations/LOCATION/datasets/DATASET_ID/operations/OPERATION_ID",
  "metadata": {
    "@type": "type.googleapis.com/google.cloud.aiplatform.v1.CreateDatasetOperationMetadata",
    "genericMetadata": {
      "createTime": "2020-07-07T21:27:35.964882Z",
      "updateTime": "2020-07-07T21:27:35.964882Z"
    }
}

Java

이 샘플을 사용해 보기 전에 Vertex AI 빠른 시작: 클라이언트 라이브러리 사용Java 설정 안내를 따르세요. 자세한 내용은 Vertex AI Java API 참고 문서를 참조하세요.

Vertex AI에 인증하려면 애플리케이션 기본 사용자 인증 정보를 설정합니다. 자세한 내용은 로컬 개발 환경의 인증 설정을 참조하세요.


import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.aiplatform.v1.CreateDatasetOperationMetadata;
import com.google.cloud.aiplatform.v1.Dataset;
import com.google.cloud.aiplatform.v1.DatasetServiceClient;
import com.google.cloud.aiplatform.v1.DatasetServiceSettings;
import com.google.cloud.aiplatform.v1.LocationName;
import com.google.protobuf.Value;
import com.google.protobuf.util.JsonFormat;
import java.io.IOException;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;

public class CreateDatasetTabularGcsSample {

  public static void main(String[] args)
      throws InterruptedException, ExecutionException, TimeoutException, IOException {
    // TODO(developer): Replace these variables before running the sample.
    String project = "YOUR_PROJECT_ID";
    String datasetDisplayName = "YOUR_DATASET_DISPLAY_NAME";
    String gcsSourceUri = "gs://YOUR_GCS_SOURCE_BUCKET/path_to_your_gcs_table/file.csv";
    ;
    createDatasetTableGcs(project, datasetDisplayName, gcsSourceUri);
  }

  static void createDatasetTableGcs(String project, String datasetDisplayName, String gcsSourceUri)
      throws IOException, ExecutionException, InterruptedException, TimeoutException {
    DatasetServiceSettings settings =
        DatasetServiceSettings.newBuilder()
            .setEndpoint("us-central1-aiplatform.googleapis.com:443")
            .build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (DatasetServiceClient datasetServiceClient = DatasetServiceClient.create(settings)) {
      String location = "us-central1";
      String metadataSchemaUri =
          "gs://google-cloud-aiplatform/schema/dataset/metadata/tables_1.0.0.yaml";
      LocationName locationName = LocationName.of(project, location);

      String jsonString =
          "{\"input_config\": {\"gcs_source\": {\"uri\": [\"" + gcsSourceUri + "\"]}}}";
      Value.Builder metaData = Value.newBuilder();
      JsonFormat.parser().merge(jsonString, metaData);

      Dataset dataset =
          Dataset.newBuilder()
              .setDisplayName(datasetDisplayName)
              .setMetadataSchemaUri(metadataSchemaUri)
              .setMetadata(metaData)
              .build();

      OperationFuture<Dataset, CreateDatasetOperationMetadata> datasetFuture =
          datasetServiceClient.createDatasetAsync(locationName, dataset);
      System.out.format("Operation name: %s\n", datasetFuture.getInitialFuture().get().getName());
      System.out.println("Waiting for operation to finish...");
      Dataset datasetResponse = datasetFuture.get(300, TimeUnit.SECONDS);

      System.out.println("Create Dataset Table GCS sample");
      System.out.format("Name: %s\n", datasetResponse.getName());
      System.out.format("Display Name: %s\n", datasetResponse.getDisplayName());
      System.out.format("Metadata Schema Uri: %s\n", datasetResponse.getMetadataSchemaUri());
      System.out.format("Metadata: %s\n", datasetResponse.getMetadata());
    }
  }
}

Node.js

이 샘플을 사용해 보기 전에 Vertex AI 빠른 시작: 클라이언트 라이브러리 사용Node.js 설정 안내를 따르세요. 자세한 내용은 Vertex AI Node.js API 참고 문서를 참조하세요.

Vertex AI에 인증하려면 애플리케이션 기본 사용자 인증 정보를 설정합니다. 자세한 내용은 로컬 개발 환경의 인증 설정을 참조하세요.

/**
 * TODO(developer): Uncomment these variables before running the sample.\
 * (Not necessary if passing values as arguments)
 */

// const datasetDisplayName = 'YOUR_DATASET_DISPLAY_NAME';
// const gcsSourceUri = 'YOUR_GCS_SOURCE_URI';
// const project = 'YOUR_PROJECT_ID';
// const location = 'YOUR_PROJECT_LOCATION';

// Imports the Google Cloud Dataset Service Client library
const {DatasetServiceClient} = require('@google-cloud/aiplatform');

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: 'us-central1-aiplatform.googleapis.com',
};

// Instantiates a client
const datasetServiceClient = new DatasetServiceClient(clientOptions);

async function createDatasetTabularGcs() {
  // Configure the parent resource
  const parent = `projects/${project}/locations/${location}`;
  const metadata = {
    structValue: {
      fields: {
        inputConfig: {
          structValue: {
            fields: {
              gcsSource: {
                structValue: {
                  fields: {
                    uri: {
                      listValue: {
                        values: [{stringValue: gcsSourceUri}],
                      },
                    },
                  },
                },
              },
            },
          },
        },
      },
    },
  };
  // Configure the dataset resource
  const dataset = {
    displayName: datasetDisplayName,
    metadataSchemaUri:
      'gs://google-cloud-aiplatform/schema/dataset/metadata/tabular_1.0.0.yaml',
    metadata: metadata,
  };
  const request = {
    parent,
    dataset,
  };

  // Create dataset request
  const [response] = await datasetServiceClient.createDataset(request);
  console.log(`Long running operation : ${response.name}`);

  // Wait for operation to complete
  await response.promise();
  const result = response.result;

  console.log('Create dataset tabular gcs response');
  console.log(`\tName : ${result.name}`);
  console.log(`\tDisplay name : ${result.displayName}`);
  console.log(`\tMetadata schema uri : ${result.metadataSchemaUri}`);
  console.log(`\tMetadata : ${JSON.stringify(result.metadata)}`);
}
createDatasetTabularGcs();

Python

Vertex AI SDK for Python을 설치하거나 업데이트하는 방법은 Vertex AI SDK for Python 설치를 참조하세요. 자세한 내용은 Python API 참고 문서를 확인하세요.

def create_and_import_dataset_tabular_gcs_sample(
    display_name: str,
    project: str,
    location: str,
    gcs_source: Union[str, List[str]],
):

    aiplatform.init(project=project, location=location)

    dataset = aiplatform.TabularDataset.create(
        display_name=display_name,
        gcs_source=gcs_source,
    )

    dataset.wait()

    print(f'\tDataset: "{dataset.display_name}"')
    print(f'\tname: "{dataset.resource_name}"')

BigQuery에서 데이터가 있는 데이터 세트 만들기

REST

datasets.create 메서드를 사용하여 데이터 세트를 만듭니다.

요청 데이터를 사용하기 전에 다음을 바꿉니다.

  • LOCATION: 데이터 세트가 저장될 리전. 데이터 세트 리소스를 지원하는 리전이어야 합니다. 예를 들면 us-central1입니다.
  • PROJECT: 프로젝트 ID
  • DATASET_NAME: 데이터 세트의 표시 이름
  • METADATA_SCHEMA_URI: 목표의 스키마 파일에 대한 URI gs://google-cloud-aiplatform/schema/dataset/metadata/tabular_1.0.0.yaml
  • URI: 학습 데이터가 포함된 BigQuery 테이블의 경로입니다. 다음 안내를 따라 양식을 작성하세요.
    bq://bqprojectId.bqDatasetId.bqTableId
    
  • PROJECT_NUMBER: 프로젝트의 자동으로 생성된 프로젝트 번호

HTTP 메서드 및 URL:

POST https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/datasets

JSON 요청 본문:

{
  "display_name": "DATASET_NAME",
  "metadata_schema_uri": "METADATA_SCHEMA_URI",
  "metadata": {
    "input_config": {
      "bigquery_source" :{
        "uri": "URI
      }
    }
  }
}

요청을 보내려면 다음 옵션 중 하나를 선택합니다.

curl

요청 본문을 request.json 파일에 저장하고 다음 명령어를 실행합니다.

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/datasets"

PowerShell

요청 본문을 request.json 파일에 저장하고 다음 명령어를 실행합니다.

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/datasets" | Select-Object -Expand Content

다음과 비슷한 JSON 응답이 표시됩니다.

{
  "name": "projects/PROJECT_NUMBER/locations/LOCATION/datasets/DATASET_ID/operations/OPERATION_ID",
  "metadata": {
    "@type": "type.googleapis.com/google.cloud.aiplatform.v1.CreateDatasetOperationMetadata",
    "genericMetadata": {
      "createTime": "2020-07-07T21:27:35.964882Z",
      "updateTime": "2020-07-07T21:27:35.964882Z"
    }
}

Java

이 샘플을 사용해 보기 전에 Vertex AI 빠른 시작: 클라이언트 라이브러리 사용Java 설정 안내를 따르세요. 자세한 내용은 Vertex AI Java API 참고 문서를 참조하세요.

Vertex AI에 인증하려면 애플리케이션 기본 사용자 인증 정보를 설정합니다. 자세한 내용은 로컬 개발 환경의 인증 설정을 참조하세요.


import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.aiplatform.v1.CreateDatasetOperationMetadata;
import com.google.cloud.aiplatform.v1.Dataset;
import com.google.cloud.aiplatform.v1.DatasetServiceClient;
import com.google.cloud.aiplatform.v1.DatasetServiceSettings;
import com.google.cloud.aiplatform.v1.LocationName;
import com.google.protobuf.Value;
import com.google.protobuf.util.JsonFormat;
import java.io.IOException;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;

public class CreateDatasetTabularBigquerySample {

  public static void main(String[] args)
      throws InterruptedException, ExecutionException, TimeoutException, IOException {
    // TODO(developer): Replace these variables before running the sample.
    String project = "YOUR_PROJECT_ID";
    String bigqueryDisplayName = "YOUR_DATASET_DISPLAY_NAME";
    String bigqueryUri =
        "bq://YOUR_GOOGLE_CLOUD_PROJECT_ID.BIGQUERY_DATASET_ID.BIGQUERY_TABLE_OR_VIEW_ID";
    createDatasetTableBigquery(project, bigqueryDisplayName, bigqueryUri);
  }

  static void createDatasetTableBigquery(
      String project, String bigqueryDisplayName, String bigqueryUri)
      throws IOException, ExecutionException, InterruptedException, TimeoutException {
    DatasetServiceSettings settings =
        DatasetServiceSettings.newBuilder()
            .setEndpoint("us-central1-aiplatform.googleapis.com:443")
            .build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (DatasetServiceClient datasetServiceClient = DatasetServiceClient.create(settings)) {
      String location = "us-central1";
      String metadataSchemaUri =
          "gs://google-cloud-aiplatform/schema/dataset/metadata/tables_1.0.0.yaml";
      LocationName locationName = LocationName.of(project, location);

      String jsonString =
          "{\"input_config\": {\"bigquery_source\": {\"uri\": \"" + bigqueryUri + "\"}}}";
      Value.Builder metaData = Value.newBuilder();
      JsonFormat.parser().merge(jsonString, metaData);

      Dataset dataset =
          Dataset.newBuilder()
              .setDisplayName(bigqueryDisplayName)
              .setMetadataSchemaUri(metadataSchemaUri)
              .setMetadata(metaData)
              .build();

      OperationFuture<Dataset, CreateDatasetOperationMetadata> datasetFuture =
          datasetServiceClient.createDatasetAsync(locationName, dataset);
      System.out.format("Operation name: %s\n", datasetFuture.getInitialFuture().get().getName());
      System.out.println("Waiting for operation to finish...");
      Dataset datasetResponse = datasetFuture.get(300, TimeUnit.SECONDS);

      System.out.println("Create Dataset Table Bigquery sample");
      System.out.format("Name: %s\n", datasetResponse.getName());
      System.out.format("Display Name: %s\n", datasetResponse.getDisplayName());
      System.out.format("Metadata Schema Uri: %s\n", datasetResponse.getMetadataSchemaUri());
      System.out.format("Metadata: %s\n", datasetResponse.getMetadata());
    }
  }
}

Node.js

이 샘플을 사용해 보기 전에 Vertex AI 빠른 시작: 클라이언트 라이브러리 사용Node.js 설정 안내를 따르세요. 자세한 내용은 Vertex AI Node.js API 참고 문서를 참조하세요.

Vertex AI에 인증하려면 애플리케이션 기본 사용자 인증 정보를 설정합니다. 자세한 내용은 로컬 개발 환경의 인증 설정을 참조하세요.

/**
 * TODO(developer): Uncomment these variables before running the sample.\
 * (Not necessary if passing values as arguments)
 */

// const datasetDisplayName = 'YOUR_DATASET_DISPLAY_NAME';
// const bigquerySourceUri = 'YOUR_BIGQUERY_SOURCE_URI';
// const project = 'YOUR_PROJECT_ID';
// const location = 'YOUR_PROJECT_LOCATION';

// Imports the Google Cloud Dataset Service Client library
const {DatasetServiceClient} = require('@google-cloud/aiplatform');

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: 'us-central1-aiplatform.googleapis.com',
};

// Instantiates a client
const datasetServiceClient = new DatasetServiceClient(clientOptions);

async function createDatasetTabularBigquery() {
  // Configure the parent resource
  const parent = `projects/${project}/locations/${location}`;
  const metadata = {
    structValue: {
      fields: {
        inputConfig: {
          structValue: {
            fields: {
              bigquerySource: {
                structValue: {
                  fields: {
                    uri: {
                      listValue: {
                        values: [{stringValue: bigquerySourceUri}],
                      },
                    },
                  },
                },
              },
            },
          },
        },
      },
    },
  };
  // Configure the dataset resource
  const dataset = {
    displayName: datasetDisplayName,
    metadataSchemaUri:
      'gs://google-cloud-aiplatform/schema/dataset/metadata/tabular_1.0.0.yaml',
    metadata: metadata,
  };
  const request = {
    parent,
    dataset,
  };

  // Create dataset request
  const [response] = await datasetServiceClient.createDataset(request);
  console.log(`Long running operation : ${response.name}`);

  // Wait for operation to complete
  await response.promise();
  const result = response.result;

  console.log('Create dataset tabular bigquery response');
  console.log(`\tName : ${result.name}`);
  console.log(`\tDisplay name : ${result.displayName}`);
  console.log(`\tMetadata schema uri : ${result.metadataSchemaUri}`);
  console.log(`\tMetadata : ${JSON.stringify(result.metadata)}`);
}
createDatasetTabularBigquery();

Python

Vertex AI SDK for Python을 설치하거나 업데이트하는 방법은 Vertex AI SDK for Python 설치를 참조하세요. 자세한 내용은 Python API 참고 문서를 확인하세요.

def create_and_import_dataset_tabular_bigquery_sample(
    display_name: str,
    project: str,
    location: str,
    bq_source: str,
):

    aiplatform.init(project=project, location=location)

    dataset = aiplatform.TabularDataset.create(
        display_name=display_name,
        bq_source=bq_source,
    )

    dataset.wait()

    print(f'\tDataset: "{dataset.display_name}"')
    print(f'\tname: "{dataset.resource_name}"')

작업 상태 가져오기

일부 요청은 완료하는 데 시간이 걸리는 장기 실행 작업을 시작합니다. 이러한 요청은 작업 상태를 보거나 작업을 취소하는 데 사용할 수 있는 작업 이름을 반환합니다. Vertex AI는 장기 실행 작업을 호출하는 도우미 메서드를 제공합니다. 자세한 내용은 장기 실행 작업 다루기를 참조하세요.

다음 단계