数据科学家和机器学习 (ML) 开发者可使用 Python 版 Vertex AI SDK 在自定义机器学习工作流中构建、训练和部署模型。这包括创建数据集并上传数据、训练机器学习模型、上传和存储模型、部署模型、运行批量预测作业以及管理模型和端点。
Vertex AI SDK 还包含用于使用文本、代码、聊天和文本嵌入基础模型创建生成式 AI 解决方案的类。您可以使用这些类来生成文本、创建文本或代码聊天机器人、调优基础模型以及创建文本嵌入。文本嵌入是用于搜索商品的向量形式的文本。如需了解详情,请参阅 Vertex AI SDK 中的语言模型类简介。
您可以在 Vertex AI 中托管的 JupyterLab 笔记本中使用 Python 版 Vertex AI SDK 来编写和运行代码。笔记本包含预安装的机器学习框架,例如 TensorFlow 和 PyTorch。您还可以使用其他笔记本(如 Colab 笔记本),或使用您选择的支持 Python 的开发者环境。
[[["易于理解","easyToUnderstand","thumb-up"],["解决了我的问题","solvedMyProblem","thumb-up"],["其他","otherUp","thumb-up"]],[["很难理解","hardToUnderstand","thumb-down"],["信息或示例代码不正确","incorrectInformationOrSampleCode","thumb-down"],["没有我需要的信息/示例","missingTheInformationSamplesINeed","thumb-down"],["翻译问题","translationIssue","thumb-down"],["其他","otherDown","thumb-down"]],["最后更新时间 (UTC):2025-06-09。"],[],[],null,["# Vertex AI SDK class overview\n\nData scientists and machine learning (ML) developers use the Vertex AI SDK for Python to build, train, and deploy models in a custom ML workflow. This includes creating datasets and uploading data, training an ML model, uploading and storing your model, deploying your model, running batch prediction jobs, and managing your models and endpoints.\n\n\u003cbr /\u003e\n\nThe Vertex AI SDK also includes classes to create generative AI\nsolutions with text, code, chat, and text embedding foundation models. You can\nuse these classes to generate text, create a text or code chatbot, tune a\nfoundation model, and create a text embedding. A text embedding is text in the\nform of a vector used to search for items. For more information, see\n[Introduction to language model classes in the Vertex AI SDK](/vertex-ai/generative-ai/docs/sdk-for-llm/llm-sdk-overview).\n\nYou can use the Vertex AI SDK for Python in hosted JupyterLab notebooks within\nVertex AI to write and run your code. The notebooks include preinstalled\nML frameworks, such as TensorFlow and PyTorch. You can also use other notebooks,\nsuch as Colab notebooks, or use a developer environment of your choice that\nsupports Python.\n\nIf you want to try using the Vertex AI SDK for Python right now, see the following\nresources:\n\n- [Introduction to the Vertex AI SDK for Python](/vertex-ai/docs/python-sdk/use-vertex-ai-python-sdk)\n- [Vertex AI SDK reference](/python/docs/reference/aiplatform/latest/google.cloud.aiplatform)\n- [Vertex AI SDK language model reference](/python/docs/reference/aiplatform/latest/vertexai.language_models)\n- [Train a model using Vertex AI and the Python SDK](/vertex-ai/docs/tutorials/tabular-bq-prediction)\n\nThe Vertex AI SDK includes many classes to help you automate data\ningestion, train models, and get predictions. It also includes classes to help\nyou monitor, evaluate, and optimize your machine learning (ML) workflow. The\nclasses can be loosely grouped into the following categories:\n\n- [Data classes](/vertex-ai/docs/python-sdk/data-classes) include classes that work with structured data, unstructured data, and the Vertex AI Feature Store.\n- [Training classes](/vertex-ai/docs/python-sdk/training-classes) include classes that work with AutoML training for structured and unstructured data, custom training, hyperparameter training, and pipeline training.\n- [Model classes](/vertex-ai/docs/python-sdk/model-classes) work with models and model evaluations.\n- [Prediction classes](/vertex-ai/docs/python-sdk/prediction-classes) work with batch predictions, online predictions, and Vector Search predictions.\n- [Tracking classes](/vertex-ai/docs/python-sdk/tracking-classes) work with Vertex ML Metadata, Vertex AI Experiments, and Vertex AI TensorBoard."]]