Treinar um modelo de classificação de imagens

Nesta página, mostramos como treinar um modelo de classificação do AutoML em um conjunto de dados de imagem usando o console do Google Cloud ou a API Vertex AI.

Treinar um modelo do AutoML

Console do Google Cloud

  1. No Console do Google Cloud, na seção da Vertex AI, acesse a página Conjuntos de dados.

    Acessar a página "Conjuntos de dados"

  2. Clique no nome do conjunto de dados que você quer usar para treinar seu modelo para abrir a página de detalhes.

  3. Clique em Treinar novo modelo.

  4. Para o método de treinamento, selecione o AutoML.

  5. Clique em Continuar.

  6. Dê um nome para o modelo.

  7. Se você quiser definir manualmente como os dados de treinamento são divididos, expanda as Opções avançadas e selecione uma opção de divisão de dados. Saiba mais.

  8. Clique em Iniciar treinamento.

    O treinamento do modelo pode levar muitas horas dependendo do tamanho e da complexidade dos dados, além do orçamento de treinamento, se você tiver especificado um. Você pode fechar essa guia e voltar a ela mais tarde. Você receberá um e-mail quando o treinamento do seu modelo for concluído.

API

Selecione a guia abaixo para seu objetivo:

Classificação

Selecione a guia abaixo para seu idioma ou ambiente:

REST

Antes de usar os dados da solicitação abaixo, faça as substituições a seguir:

  • LOCATION: região em que o conjunto de dados está localizado e o modelo é criado. Por exemplo, us-central1.
  • PROJECT: o ID do projeto.
  • TRAININGPIPELINE_DISPLAYNAME: obrigatório. Um nome de exibição do trainingPipeline.
  • DATASET_ID: o número do ID do conjunto de dados a ser usado para treinamento.
  • fractionSplit: opcional. Um dos vários modelos de ML possíveis pode usar opções de divisão para os dados. Para fractionSplit, os valores precisam somar 1. Por exemplo:
    • {"trainingFraction": "0.7","validationFraction": "0.15","testFraction": "0.15"}
  • MODEL_DISPLAYNAME*: um nome de exibição do modelo enviado (criado) pelo TrainingPipeline.
  • MODEL_DESCRIPTION*: uma descrição para o modelo.
  • modelToUpload.labels*: qualquer conjunto de pares de chave-valor para organizar seus modelos. Por exemplo:
    • "env": "prod"
    • "tier": "backend"
  • MODELTYPE: o tipo de modelo hospedado na nuvem a ser treinado. As opções são:
    • CLOUD (padrão)
  • NODE_HOUR_BUDGET: o custo de treinamento real será igual ou menor que este valor. Para modelos em nuvem, o orçamento precisa ser de 8.000 a 800.000 mil horas de uso do nó (inclusive). O valor padrão é 192.000, o que representa um dia em tempo decorrido, desde que oito nós sejam usados.
  • PROJECT_NUMBER: o número do projeto gerado automaticamente

Método HTTP e URL:

POST https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/trainingPipelines

Corpo JSON da solicitação:

{
  "displayName": "TRAININGPIPELINE_DISPLAYNAME",
  "inputDataConfig": {
    "datasetId": "DATASET_ID",
    "fractionSplit": {
      "trainingFraction": "DECIMAL",
      "validationFraction": "DECIMAL",
      "testFraction": "DECIMAL"
    }
  },
  "modelToUpload": {
    "displayName": "MODEL_DISPLAYNAME",
    "description": "MODEL_DESCRIPTION",
    "labels": {
      "KEY": "VALUE"
    }
  },
  "trainingTaskDefinition": "gs://google-cloud-aiplatform/schema/trainingjob/definition/automl_image_classification_1.0.0.yaml",
  "trainingTaskInputs": {
    "multiLabel": "false",
    "modelType": ["MODELTYPE"],
    "budgetMilliNodeHours": NODE_HOUR_BUDGET
  }
}

Para enviar a solicitação, escolha uma destas opções:

curl

Salve o corpo da solicitação em um arquivo com o nome request.json e execute o comando a seguir:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/trainingPipelines"

PowerShell

Salve o corpo da solicitação em um arquivo com o nome request.json e execute o comando a seguir:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/trainingPipelines" | Select-Object -Expand Content

A resposta contém informações sobre especificações, bem como o TRAININGPIPELINE_ID.

Java

Antes de testar esse exemplo, siga as instruções de configuração para Java no Guia de início rápido da Vertex AI sobre como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vertex AI para Java.

Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

import com.google.cloud.aiplatform.util.ValueConverter;
import com.google.cloud.aiplatform.v1.DeployedModelRef;
import com.google.cloud.aiplatform.v1.EnvVar;
import com.google.cloud.aiplatform.v1.FilterSplit;
import com.google.cloud.aiplatform.v1.FractionSplit;
import com.google.cloud.aiplatform.v1.InputDataConfig;
import com.google.cloud.aiplatform.v1.LocationName;
import com.google.cloud.aiplatform.v1.Model;
import com.google.cloud.aiplatform.v1.Model.ExportFormat;
import com.google.cloud.aiplatform.v1.ModelContainerSpec;
import com.google.cloud.aiplatform.v1.PipelineServiceClient;
import com.google.cloud.aiplatform.v1.PipelineServiceSettings;
import com.google.cloud.aiplatform.v1.Port;
import com.google.cloud.aiplatform.v1.PredefinedSplit;
import com.google.cloud.aiplatform.v1.PredictSchemata;
import com.google.cloud.aiplatform.v1.TimestampSplit;
import com.google.cloud.aiplatform.v1.TrainingPipeline;
import com.google.cloud.aiplatform.v1.schema.trainingjob.definition.AutoMlImageClassificationInputs;
import com.google.cloud.aiplatform.v1.schema.trainingjob.definition.AutoMlImageClassificationInputs.ModelType;
import com.google.rpc.Status;
import java.io.IOException;

public class CreateTrainingPipelineImageClassificationSample {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String trainingPipelineDisplayName = "YOUR_TRAINING_PIPELINE_DISPLAY_NAME";
    String project = "YOUR_PROJECT_ID";
    String datasetId = "YOUR_DATASET_ID";
    String modelDisplayName = "YOUR_MODEL_DISPLAY_NAME";
    createTrainingPipelineImageClassificationSample(
        project, trainingPipelineDisplayName, datasetId, modelDisplayName);
  }

  static void createTrainingPipelineImageClassificationSample(
      String project, String trainingPipelineDisplayName, String datasetId, String modelDisplayName)
      throws IOException {
    PipelineServiceSettings pipelineServiceSettings =
        PipelineServiceSettings.newBuilder()
            .setEndpoint("us-central1-aiplatform.googleapis.com:443")
            .build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (PipelineServiceClient pipelineServiceClient =
        PipelineServiceClient.create(pipelineServiceSettings)) {
      String location = "us-central1";
      String trainingTaskDefinition =
          "gs://google-cloud-aiplatform/schema/trainingjob/definition/"
              + "automl_image_classification_1.0.0.yaml";
      LocationName locationName = LocationName.of(project, location);

      AutoMlImageClassificationInputs autoMlImageClassificationInputs =
          AutoMlImageClassificationInputs.newBuilder()
              .setModelType(ModelType.CLOUD)
              .setMultiLabel(false)
              .setBudgetMilliNodeHours(8000)
              .setDisableEarlyStopping(false)
              .build();

      InputDataConfig trainingInputDataConfig =
          InputDataConfig.newBuilder().setDatasetId(datasetId).build();
      Model model = Model.newBuilder().setDisplayName(modelDisplayName).build();
      TrainingPipeline trainingPipeline =
          TrainingPipeline.newBuilder()
              .setDisplayName(trainingPipelineDisplayName)
              .setTrainingTaskDefinition(trainingTaskDefinition)
              .setTrainingTaskInputs(ValueConverter.toValue(autoMlImageClassificationInputs))
              .setInputDataConfig(trainingInputDataConfig)
              .setModelToUpload(model)
              .build();

      TrainingPipeline trainingPipelineResponse =
          pipelineServiceClient.createTrainingPipeline(locationName, trainingPipeline);

      System.out.println("Create Training Pipeline Image Classification Response");
      System.out.format("Name: %s\n", trainingPipelineResponse.getName());
      System.out.format("Display Name: %s\n", trainingPipelineResponse.getDisplayName());

      System.out.format(
          "Training Task Definition %s\n", trainingPipelineResponse.getTrainingTaskDefinition());
      System.out.format(
          "Training Task Inputs: %s\n", trainingPipelineResponse.getTrainingTaskInputs());
      System.out.format(
          "Training Task Metadata: %s\n", trainingPipelineResponse.getTrainingTaskMetadata());
      System.out.format("State: %s\n", trainingPipelineResponse.getState());

      System.out.format("Create Time: %s\n", trainingPipelineResponse.getCreateTime());
      System.out.format("StartTime %s\n", trainingPipelineResponse.getStartTime());
      System.out.format("End Time: %s\n", trainingPipelineResponse.getEndTime());
      System.out.format("Update Time: %s\n", trainingPipelineResponse.getUpdateTime());
      System.out.format("Labels: %s\n", trainingPipelineResponse.getLabelsMap());

      InputDataConfig inputDataConfig = trainingPipelineResponse.getInputDataConfig();
      System.out.println("Input Data Config");
      System.out.format("Dataset Id: %s", inputDataConfig.getDatasetId());
      System.out.format("Annotations Filter: %s\n", inputDataConfig.getAnnotationsFilter());

      FractionSplit fractionSplit = inputDataConfig.getFractionSplit();
      System.out.println("Fraction Split");
      System.out.format("Training Fraction: %s\n", fractionSplit.getTrainingFraction());
      System.out.format("Validation Fraction: %s\n", fractionSplit.getValidationFraction());
      System.out.format("Test Fraction: %s\n", fractionSplit.getTestFraction());

      FilterSplit filterSplit = inputDataConfig.getFilterSplit();
      System.out.println("Filter Split");
      System.out.format("Training Filter: %s\n", filterSplit.getTrainingFilter());
      System.out.format("Validation Filter: %s\n", filterSplit.getValidationFilter());
      System.out.format("Test Filter: %s\n", filterSplit.getTestFilter());

      PredefinedSplit predefinedSplit = inputDataConfig.getPredefinedSplit();
      System.out.println("Predefined Split");
      System.out.format("Key: %s\n", predefinedSplit.getKey());

      TimestampSplit timestampSplit = inputDataConfig.getTimestampSplit();
      System.out.println("Timestamp Split");
      System.out.format("Training Fraction: %s\n", timestampSplit.getTrainingFraction());
      System.out.format("Validation Fraction: %s\n", timestampSplit.getValidationFraction());
      System.out.format("Test Fraction: %s\n", timestampSplit.getTestFraction());
      System.out.format("Key: %s\n", timestampSplit.getKey());

      Model modelResponse = trainingPipelineResponse.getModelToUpload();
      System.out.println("Model To Upload");
      System.out.format("Name: %s\n", modelResponse.getName());
      System.out.format("Display Name: %s\n", modelResponse.getDisplayName());
      System.out.format("Description: %s\n", modelResponse.getDescription());

      System.out.format("Metadata Schema Uri: %s\n", modelResponse.getMetadataSchemaUri());
      System.out.format("Metadata: %s\n", modelResponse.getMetadata());
      System.out.format("Training Pipeline: %s\n", modelResponse.getTrainingPipeline());
      System.out.format("Artifact Uri: %s\n", modelResponse.getArtifactUri());

      System.out.format(
          "Supported Deployment Resources Types: %s\n",
          modelResponse.getSupportedDeploymentResourcesTypesList());
      System.out.format(
          "Supported Input Storage Formats: %s\n",
          modelResponse.getSupportedInputStorageFormatsList());
      System.out.format(
          "Supported Output Storage Formats: %s\n",
          modelResponse.getSupportedOutputStorageFormatsList());

      System.out.format("Create Time: %s\n", modelResponse.getCreateTime());
      System.out.format("Update Time: %s\n", modelResponse.getUpdateTime());
      System.out.format("Labels: %sn\n", modelResponse.getLabelsMap());

      PredictSchemata predictSchemata = modelResponse.getPredictSchemata();
      System.out.println("Predict Schemata");
      System.out.format("Instance Schema Uri: %s\n", predictSchemata.getInstanceSchemaUri());
      System.out.format("Parameters Schema Uri: %s\n", predictSchemata.getParametersSchemaUri());
      System.out.format("Prediction Schema Uri: %s\n", predictSchemata.getPredictionSchemaUri());

      for (ExportFormat exportFormat : modelResponse.getSupportedExportFormatsList()) {
        System.out.println("Supported Export Format");
        System.out.format("Id: %s\n", exportFormat.getId());
      }

      ModelContainerSpec modelContainerSpec = modelResponse.getContainerSpec();
      System.out.println("Container Spec");
      System.out.format("Image Uri: %s\n", modelContainerSpec.getImageUri());
      System.out.format("Command: %s\n", modelContainerSpec.getCommandList());
      System.out.format("Args: %s\n", modelContainerSpec.getArgsList());
      System.out.format("Predict Route: %s\n", modelContainerSpec.getPredictRoute());
      System.out.format("Health Route: %s\n", modelContainerSpec.getHealthRoute());

      for (EnvVar envVar : modelContainerSpec.getEnvList()) {
        System.out.println("Env");
        System.out.format("Name: %s\n", envVar.getName());
        System.out.format("Value: %s\n", envVar.getValue());
      }

      for (Port port : modelContainerSpec.getPortsList()) {
        System.out.println("Port");
        System.out.format("Container Port: %s\n", port.getContainerPort());
      }

      for (DeployedModelRef deployedModelRef : modelResponse.getDeployedModelsList()) {
        System.out.println("Deployed Model");
        System.out.format("Endpoint: %s\n", deployedModelRef.getEndpoint());
        System.out.format("Deployed Model Id: %s\n", deployedModelRef.getDeployedModelId());
      }

      Status status = trainingPipelineResponse.getError();
      System.out.println("Error");
      System.out.format("Code: %s\n", status.getCode());
      System.out.format("Message: %s\n", status.getMessage());
    }
  }
}

Node.js

Antes de testar esse exemplo, siga as instruções de configuração para Node.js no Guia de início rápido da Vertex AI sobre como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vertex AI para Node.js.

Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

/**
 * TODO(developer): Uncomment these variables before running the sample.
 * (Not necessary if passing values as arguments)
 */
/*
const datasetId = 'YOUR DATASET';
const modelDisplayName = 'NEW MODEL NAME;
const trainingPipelineDisplayName = 'NAME FOR TRAINING PIPELINE';
const project = 'YOUR PROJECT ID';
const location = 'us-central1';
  */
// Imports the Google Cloud Pipeline Service Client library
const aiplatform = require('@google-cloud/aiplatform');

const {definition} =
  aiplatform.protos.google.cloud.aiplatform.v1.schema.trainingjob;
const ModelType = definition.AutoMlImageClassificationInputs.ModelType;

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: 'us-central1-aiplatform.googleapis.com',
};

// Instantiates a client
const {PipelineServiceClient} = aiplatform.v1;
const pipelineServiceClient = new PipelineServiceClient(clientOptions);

async function createTrainingPipelineImageClassification() {
  // Configure the parent resource
  const parent = `projects/${project}/locations/${location}`;

  // Values should match the input expected by your model.
  const trainingTaskInputsMessage =
    new definition.AutoMlImageClassificationInputs({
      multiLabel: true,
      modelType: ModelType.CLOUD,
      budgetMilliNodeHours: 8000,
      disableEarlyStopping: false,
    });

  const trainingTaskInputs = trainingTaskInputsMessage.toValue();

  const trainingTaskDefinition =
    'gs://google-cloud-aiplatform/schema/trainingjob/definition/automl_image_classification_1.0.0.yaml';

  const modelToUpload = {displayName: modelDisplayName};
  const inputDataConfig = {datasetId};
  const trainingPipeline = {
    displayName: trainingPipelineDisplayName,
    trainingTaskDefinition,
    trainingTaskInputs,
    inputDataConfig,
    modelToUpload,
  };
  const request = {parent, trainingPipeline};

  // Create training pipeline request
  const [response] =
    await pipelineServiceClient.createTrainingPipeline(request);

  console.log('Create training pipeline image classification response');
  console.log(`Name : ${response.name}`);
  console.log('Raw response:');
  console.log(JSON.stringify(response, null, 2));
}

createTrainingPipelineImageClassification();

Python

Para saber como instalar o SDK da Vertex AI para Python, consulte Instalar o SDK da Vertex AI para Python. Para mais informações, consulte a documentação de referência da API Python.

def create_training_pipeline_image_classification_sample(
    project: str,
    location: str,
    display_name: str,
    dataset_id: str,
    model_display_name: Optional[str] = None,
    model_type: str = "CLOUD",
    multi_label: bool = False,
    training_fraction_split: float = 0.8,
    validation_fraction_split: float = 0.1,
    test_fraction_split: float = 0.1,
    budget_milli_node_hours: int = 8000,
    disable_early_stopping: bool = False,
    sync: bool = True,
):
    aiplatform.init(project=project, location=location)

    job = aiplatform.AutoMLImageTrainingJob(
        display_name=display_name,
        model_type=model_type,
        prediction_type="classification",
        multi_label=multi_label,
    )

    my_image_ds = aiplatform.ImageDataset(dataset_id)

    model = job.run(
        dataset=my_image_ds,
        model_display_name=model_display_name,
        training_fraction_split=training_fraction_split,
        validation_fraction_split=validation_fraction_split,
        test_fraction_split=test_fraction_split,
        budget_milli_node_hours=budget_milli_node_hours,
        disable_early_stopping=disable_early_stopping,
        sync=sync,
    )

    model.wait()

    print(model.display_name)
    print(model.resource_name)
    print(model.uri)
    return model

Classificação

Selecione a guia abaixo para seu idioma ou ambiente:

REST

Antes de usar os dados da solicitação abaixo, faça as substituições a seguir:

  • LOCATION: região em que o conjunto de dados está localizado e o modelo é criado. Por exemplo, us-central1.
  • PROJECT: o ID do projeto.
  • TRAININGPIPELINE_DISPLAYNAME: obrigatório. Um nome de exibição do trainingPipeline.
  • DATASET_ID: o número do ID do conjunto de dados a ser usado para treinamento.
  • fractionSplit: opcional. Um dos vários modelos de ML possíveis pode usar opções de divisão para os dados. Para fractionSplit, os valores precisam somar 1. Por exemplo:
    • {"trainingFraction": "0.7","validationFraction": "0.15","testFraction": "0.15"}
  • MODEL_DISPLAYNAME*: um nome de exibição do modelo enviado (criado) pelo TrainingPipeline.
  • MODEL_DESCRIPTION*: uma descrição para o modelo.
  • modelToUpload.labels*: qualquer conjunto de pares de chave-valor para organizar seus modelos. Por exemplo:
    • "env": "prod"
    • "tier": "backend"
  • MODELTYPE: o tipo de modelo hospedado na nuvem a ser treinado. As opções são:
    • CLOUD (padrão)
  • NODE_HOUR_BUDGET: o custo de treinamento real será igual ou menor que este valor. Para modelos em nuvem, o orçamento precisa ser de 8.000 a 800.000 mil horas de uso do nó (inclusive). O valor padrão é 192.000, o que representa um dia em tempo decorrido, desde que oito nós sejam usados.
  • PROJECT_NUMBER: o número do projeto gerado automaticamente

Método HTTP e URL:

POST https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/trainingPipelines

Corpo JSON da solicitação:

{
  "displayName": "TRAININGPIPELINE_DISPLAYNAME",
  "inputDataConfig": {
    "datasetId": "DATASET_ID",
    "fractionSplit": {
      "trainingFraction": "DECIMAL",
      "validationFraction": "DECIMAL",
      "testFraction": "DECIMAL"
    }
  },
  "modelToUpload": {
    "displayName": "MODEL_DISPLAYNAME",
    "description": "MODEL_DESCRIPTION",
    "labels": {
      "KEY": "VALUE"
    }
  },
  "trainingTaskDefinition": "gs://google-cloud-aiplatform/schema/trainingjob/definition/automl_image_classification_1.0.0.yaml",
  "trainingTaskInputs": {
    "multiLabel": "true",
    "modelType": ["MODELTYPE"],
    "budgetMilliNodeHours": NODE_HOUR_BUDGET
  }
}

Para enviar a solicitação, escolha uma destas opções:

curl

Salve o corpo da solicitação em um arquivo com o nome request.json e execute o comando a seguir:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/trainingPipelines"

PowerShell

Salve o corpo da solicitação em um arquivo com o nome request.json e execute o comando a seguir:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/trainingPipelines" | Select-Object -Expand Content

A resposta contém informações sobre especificações, bem como o TRAININGPIPELINE_ID.

Java

Antes de testar esse exemplo, siga as instruções de configuração para Java no Guia de início rápido da Vertex AI sobre como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vertex AI para Java.

Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

import com.google.cloud.aiplatform.util.ValueConverter;
import com.google.cloud.aiplatform.v1.DeployedModelRef;
import com.google.cloud.aiplatform.v1.EnvVar;
import com.google.cloud.aiplatform.v1.FilterSplit;
import com.google.cloud.aiplatform.v1.FractionSplit;
import com.google.cloud.aiplatform.v1.InputDataConfig;
import com.google.cloud.aiplatform.v1.LocationName;
import com.google.cloud.aiplatform.v1.Model;
import com.google.cloud.aiplatform.v1.Model.ExportFormat;
import com.google.cloud.aiplatform.v1.ModelContainerSpec;
import com.google.cloud.aiplatform.v1.PipelineServiceClient;
import com.google.cloud.aiplatform.v1.PipelineServiceSettings;
import com.google.cloud.aiplatform.v1.Port;
import com.google.cloud.aiplatform.v1.PredefinedSplit;
import com.google.cloud.aiplatform.v1.PredictSchemata;
import com.google.cloud.aiplatform.v1.TimestampSplit;
import com.google.cloud.aiplatform.v1.TrainingPipeline;
import com.google.cloud.aiplatform.v1.schema.trainingjob.definition.AutoMlImageClassificationInputs;
import com.google.cloud.aiplatform.v1.schema.trainingjob.definition.AutoMlImageClassificationInputs.ModelType;
import com.google.rpc.Status;
import java.io.IOException;

public class CreateTrainingPipelineImageClassificationSample {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String trainingPipelineDisplayName = "YOUR_TRAINING_PIPELINE_DISPLAY_NAME";
    String project = "YOUR_PROJECT_ID";
    String datasetId = "YOUR_DATASET_ID";
    String modelDisplayName = "YOUR_MODEL_DISPLAY_NAME";
    createTrainingPipelineImageClassificationSample(
        project, trainingPipelineDisplayName, datasetId, modelDisplayName);
  }

  static void createTrainingPipelineImageClassificationSample(
      String project, String trainingPipelineDisplayName, String datasetId, String modelDisplayName)
      throws IOException {
    PipelineServiceSettings pipelineServiceSettings =
        PipelineServiceSettings.newBuilder()
            .setEndpoint("us-central1-aiplatform.googleapis.com:443")
            .build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (PipelineServiceClient pipelineServiceClient =
        PipelineServiceClient.create(pipelineServiceSettings)) {
      String location = "us-central1";
      String trainingTaskDefinition =
          "gs://google-cloud-aiplatform/schema/trainingjob/definition/"
              + "automl_image_classification_1.0.0.yaml";
      LocationName locationName = LocationName.of(project, location);

      AutoMlImageClassificationInputs autoMlImageClassificationInputs =
          AutoMlImageClassificationInputs.newBuilder()
              .setModelType(ModelType.CLOUD)
              .setMultiLabel(false)
              .setBudgetMilliNodeHours(8000)
              .setDisableEarlyStopping(false)
              .build();

      InputDataConfig trainingInputDataConfig =
          InputDataConfig.newBuilder().setDatasetId(datasetId).build();
      Model model = Model.newBuilder().setDisplayName(modelDisplayName).build();
      TrainingPipeline trainingPipeline =
          TrainingPipeline.newBuilder()
              .setDisplayName(trainingPipelineDisplayName)
              .setTrainingTaskDefinition(trainingTaskDefinition)
              .setTrainingTaskInputs(ValueConverter.toValue(autoMlImageClassificationInputs))
              .setInputDataConfig(trainingInputDataConfig)
              .setModelToUpload(model)
              .build();

      TrainingPipeline trainingPipelineResponse =
          pipelineServiceClient.createTrainingPipeline(locationName, trainingPipeline);

      System.out.println("Create Training Pipeline Image Classification Response");
      System.out.format("Name: %s\n", trainingPipelineResponse.getName());
      System.out.format("Display Name: %s\n", trainingPipelineResponse.getDisplayName());

      System.out.format(
          "Training Task Definition %s\n", trainingPipelineResponse.getTrainingTaskDefinition());
      System.out.format(
          "Training Task Inputs: %s\n", trainingPipelineResponse.getTrainingTaskInputs());
      System.out.format(
          "Training Task Metadata: %s\n", trainingPipelineResponse.getTrainingTaskMetadata());
      System.out.format("State: %s\n", trainingPipelineResponse.getState());

      System.out.format("Create Time: %s\n", trainingPipelineResponse.getCreateTime());
      System.out.format("StartTime %s\n", trainingPipelineResponse.getStartTime());
      System.out.format("End Time: %s\n", trainingPipelineResponse.getEndTime());
      System.out.format("Update Time: %s\n", trainingPipelineResponse.getUpdateTime());
      System.out.format("Labels: %s\n", trainingPipelineResponse.getLabelsMap());

      InputDataConfig inputDataConfig = trainingPipelineResponse.getInputDataConfig();
      System.out.println("Input Data Config");
      System.out.format("Dataset Id: %s", inputDataConfig.getDatasetId());
      System.out.format("Annotations Filter: %s\n", inputDataConfig.getAnnotationsFilter());

      FractionSplit fractionSplit = inputDataConfig.getFractionSplit();
      System.out.println("Fraction Split");
      System.out.format("Training Fraction: %s\n", fractionSplit.getTrainingFraction());
      System.out.format("Validation Fraction: %s\n", fractionSplit.getValidationFraction());
      System.out.format("Test Fraction: %s\n", fractionSplit.getTestFraction());

      FilterSplit filterSplit = inputDataConfig.getFilterSplit();
      System.out.println("Filter Split");
      System.out.format("Training Filter: %s\n", filterSplit.getTrainingFilter());
      System.out.format("Validation Filter: %s\n", filterSplit.getValidationFilter());
      System.out.format("Test Filter: %s\n", filterSplit.getTestFilter());

      PredefinedSplit predefinedSplit = inputDataConfig.getPredefinedSplit();
      System.out.println("Predefined Split");
      System.out.format("Key: %s\n", predefinedSplit.getKey());

      TimestampSplit timestampSplit = inputDataConfig.getTimestampSplit();
      System.out.println("Timestamp Split");
      System.out.format("Training Fraction: %s\n", timestampSplit.getTrainingFraction());
      System.out.format("Validation Fraction: %s\n", timestampSplit.getValidationFraction());
      System.out.format("Test Fraction: %s\n", timestampSplit.getTestFraction());
      System.out.format("Key: %s\n", timestampSplit.getKey());

      Model modelResponse = trainingPipelineResponse.getModelToUpload();
      System.out.println("Model To Upload");
      System.out.format("Name: %s\n", modelResponse.getName());
      System.out.format("Display Name: %s\n", modelResponse.getDisplayName());
      System.out.format("Description: %s\n", modelResponse.getDescription());

      System.out.format("Metadata Schema Uri: %s\n", modelResponse.getMetadataSchemaUri());
      System.out.format("Metadata: %s\n", modelResponse.getMetadata());
      System.out.format("Training Pipeline: %s\n", modelResponse.getTrainingPipeline());
      System.out.format("Artifact Uri: %s\n", modelResponse.getArtifactUri());

      System.out.format(
          "Supported Deployment Resources Types: %s\n",
          modelResponse.getSupportedDeploymentResourcesTypesList());
      System.out.format(
          "Supported Input Storage Formats: %s\n",
          modelResponse.getSupportedInputStorageFormatsList());
      System.out.format(
          "Supported Output Storage Formats: %s\n",
          modelResponse.getSupportedOutputStorageFormatsList());

      System.out.format("Create Time: %s\n", modelResponse.getCreateTime());
      System.out.format("Update Time: %s\n", modelResponse.getUpdateTime());
      System.out.format("Labels: %sn\n", modelResponse.getLabelsMap());

      PredictSchemata predictSchemata = modelResponse.getPredictSchemata();
      System.out.println("Predict Schemata");
      System.out.format("Instance Schema Uri: %s\n", predictSchemata.getInstanceSchemaUri());
      System.out.format("Parameters Schema Uri: %s\n", predictSchemata.getParametersSchemaUri());
      System.out.format("Prediction Schema Uri: %s\n", predictSchemata.getPredictionSchemaUri());

      for (ExportFormat exportFormat : modelResponse.getSupportedExportFormatsList()) {
        System.out.println("Supported Export Format");
        System.out.format("Id: %s\n", exportFormat.getId());
      }

      ModelContainerSpec modelContainerSpec = modelResponse.getContainerSpec();
      System.out.println("Container Spec");
      System.out.format("Image Uri: %s\n", modelContainerSpec.getImageUri());
      System.out.format("Command: %s\n", modelContainerSpec.getCommandList());
      System.out.format("Args: %s\n", modelContainerSpec.getArgsList());
      System.out.format("Predict Route: %s\n", modelContainerSpec.getPredictRoute());
      System.out.format("Health Route: %s\n", modelContainerSpec.getHealthRoute());

      for (EnvVar envVar : modelContainerSpec.getEnvList()) {
        System.out.println("Env");
        System.out.format("Name: %s\n", envVar.getName());
        System.out.format("Value: %s\n", envVar.getValue());
      }

      for (Port port : modelContainerSpec.getPortsList()) {
        System.out.println("Port");
        System.out.format("Container Port: %s\n", port.getContainerPort());
      }

      for (DeployedModelRef deployedModelRef : modelResponse.getDeployedModelsList()) {
        System.out.println("Deployed Model");
        System.out.format("Endpoint: %s\n", deployedModelRef.getEndpoint());
        System.out.format("Deployed Model Id: %s\n", deployedModelRef.getDeployedModelId());
      }

      Status status = trainingPipelineResponse.getError();
      System.out.println("Error");
      System.out.format("Code: %s\n", status.getCode());
      System.out.format("Message: %s\n", status.getMessage());
    }
  }
}

Node.js

Antes de testar esse exemplo, siga as instruções de configuração para Node.js no Guia de início rápido da Vertex AI sobre como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vertex AI para Node.js.

Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

/**
 * TODO(developer): Uncomment these variables before running the sample.
 * (Not necessary if passing values as arguments)
 */
/*
const datasetId = 'YOUR DATASET';
const modelDisplayName = 'NEW MODEL NAME;
const trainingPipelineDisplayName = 'NAME FOR TRAINING PIPELINE';
const project = 'YOUR PROJECT ID';
const location = 'us-central1';
  */
// Imports the Google Cloud Pipeline Service Client library
const aiplatform = require('@google-cloud/aiplatform');

const {definition} =
  aiplatform.protos.google.cloud.aiplatform.v1.schema.trainingjob;
const ModelType = definition.AutoMlImageClassificationInputs.ModelType;

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: 'us-central1-aiplatform.googleapis.com',
};

// Instantiates a client
const {PipelineServiceClient} = aiplatform.v1;
const pipelineServiceClient = new PipelineServiceClient(clientOptions);

async function createTrainingPipelineImageClassification() {
  // Configure the parent resource
  const parent = `projects/${project}/locations/${location}`;

  // Values should match the input expected by your model.
  const trainingTaskInputsMessage =
    new definition.AutoMlImageClassificationInputs({
      multiLabel: true,
      modelType: ModelType.CLOUD,
      budgetMilliNodeHours: 8000,
      disableEarlyStopping: false,
    });

  const trainingTaskInputs = trainingTaskInputsMessage.toValue();

  const trainingTaskDefinition =
    'gs://google-cloud-aiplatform/schema/trainingjob/definition/automl_image_classification_1.0.0.yaml';

  const modelToUpload = {displayName: modelDisplayName};
  const inputDataConfig = {datasetId};
  const trainingPipeline = {
    displayName: trainingPipelineDisplayName,
    trainingTaskDefinition,
    trainingTaskInputs,
    inputDataConfig,
    modelToUpload,
  };
  const request = {parent, trainingPipeline};

  // Create training pipeline request
  const [response] =
    await pipelineServiceClient.createTrainingPipeline(request);

  console.log('Create training pipeline image classification response');
  console.log(`Name : ${response.name}`);
  console.log('Raw response:');
  console.log(JSON.stringify(response, null, 2));
}

createTrainingPipelineImageClassification();

Python

Para saber como instalar o SDK da Vertex AI para Python, consulte Instalar o SDK da Vertex AI para Python. Para mais informações, consulte a documentação de referência da API Python.

def create_training_pipeline_image_classification_sample(
    project: str,
    location: str,
    display_name: str,
    dataset_id: str,
    model_display_name: Optional[str] = None,
    model_type: str = "CLOUD",
    multi_label: bool = False,
    training_fraction_split: float = 0.8,
    validation_fraction_split: float = 0.1,
    test_fraction_split: float = 0.1,
    budget_milli_node_hours: int = 8000,
    disable_early_stopping: bool = False,
    sync: bool = True,
):
    aiplatform.init(project=project, location=location)

    job = aiplatform.AutoMLImageTrainingJob(
        display_name=display_name,
        model_type=model_type,
        prediction_type="classification",
        multi_label=multi_label,
    )

    my_image_ds = aiplatform.ImageDataset(dataset_id)

    model = job.run(
        dataset=my_image_ds,
        model_display_name=model_display_name,
        training_fraction_split=training_fraction_split,
        validation_fraction_split=validation_fraction_split,
        test_fraction_split=test_fraction_split,
        budget_milli_node_hours=budget_milli_node_hours,
        disable_early_stopping=disable_early_stopping,
        sync=sync,
    )

    model.wait()

    print(model.display_name)
    print(model.resource_name)
    print(model.uri)
    return model

Controlar a divisão de dados usando REST

É possível controlar como os dados de treinamento são divididos entre os conjuntos de treinamento, validação e teste. Ao usar a API Vertex AI, use o Splitobjeto para determinar a divisão de dados. O objeto Split pode ser incluído no objeto InputConfig como um dos vários tipos de objeto, cada um fornecendo uma maneira diferente de dividir os dados de treinamento. É possível selecionar apenas um método.

  • FractionSplit:
    • TRAINING_FRACTION: a fração dos dados de treinamento a ser usada para o conjunto de treinamento.
    • VALIDATION_FRACTION: a fração dos dados de treinamento a ser usada para o conjunto de validação. Não usada para dados de vídeo.
    • TEST_FRACTION: a fração dos dados de treinamento a ser usada para o conjunto de teste.

    Se alguma das frações for especificada, tudo deverá ser especificado. As frações precisam ser adicionadas a 1,0. Os valores padrão das frações variam de acordo com o tipo de dados. Saiba mais.

    "fractionSplit": {
      "trainingFraction": TRAINING_FRACTION,
      "validationFraction": VALIDATION_FRACTION,
      "testFraction": TEST_FRACTION
    },
    
  • FilterSplit:
    • TRAINING_FILTER: itens de dados que correspondem a esse filtro são usados no conjunto de treinamento.
    • VALIDATION_FILTER: os itens de dados que correspondem a esse filtro são usados no conjunto de validação. Precisa ser "-" para dados de vídeo.
    • TEST_FILTER: os itens de dados que correspondem a esse filtro são usados no conjunto de teste.

    Esses filtros podem ser usados com o rótulo ml_use ou com qualquer rótulo aplicado aos seus dados. Saiba mais sobre como usar o rótulo ml-use label e outros rótulos para filtrar os dados.

    O exemplo a seguir mostra como usar o objeto filterSplit com o rótulo ml_use, com o conjunto de validação incluído:

    "filterSplit": {
    "trainingFilter": "labels.aiplatform.googleapis.com/ml_use=training",
    "validationFilter": "labels.aiplatform.googleapis.com/ml_use=validation",
    "testFilter": "labels.aiplatform.googleapis.com/ml_use=test"
    }