Vertex AI로 Deep Learning VM Image 및 Deep Learning Containers 사용
컬렉션을 사용해 정리하기
내 환경설정을 기준으로 콘텐츠를 저장하고 분류하세요.
이 페이지에서는 Deep Learning VM 및 Deep Learning Containers의 주요 기능을 설명하며 Vertex AI에서 이러한 제품을 사용하는 방법을 설명합니다.
딥 러닝 VM
개요
Deep Learning VM Image는 데이터 과학 및 머신러닝 태스크에 최적화된 가상 머신 이미지 세트입니다. 모든 이미지에는 주요 ML 프레임워크와 도구가 사전 설치되어 있습니다. GPU가 있는 인스턴스에서 바로 사용하여 데이터 처리 작업을 가속화할 수 있습니다.
Deep Learning VM 이미지는 다양한 프레임워크 및 프로세서 조합을 지원하는 데 사용할 수 있습니다. 현재 TensorFlow Enterprise, TensorFlow, PyTorch, 일반 고성능 컴퓨팅을 지원하는 이미지를 사용할 수 있으며, CPU 전용 및 GPU 사용 설정된 워크플로에 대한 버전이 모두 지원됩니다.
Vertex AI에서 작업 중 일부로 Deep Learning VM 인스턴스를 사용할 수 있습니다. 예를 들어 Deep Learning VM 인스턴스에서 실행되는 애플리케이션을 개발하여 최적화된 데이터 처리 기능을 활용할 수 있습니다.
Deep Learning VM 인스턴스를 자체 관리형 분산 학습 시스템의 개발 환경으로 사용할 수도 있습니다.
[[["이해하기 쉬움","easyToUnderstand","thumb-up"],["문제가 해결됨","solvedMyProblem","thumb-up"],["기타","otherUp","thumb-up"]],[["이해하기 어려움","hardToUnderstand","thumb-down"],["잘못된 정보 또는 샘플 코드","incorrectInformationOrSampleCode","thumb-down"],["필요한 정보/샘플이 없음","missingTheInformationSamplesINeed","thumb-down"],["번역 문제","translationIssue","thumb-down"],["기타","otherDown","thumb-down"]],["최종 업데이트: 2025-09-04(UTC)"],[],[],null,["# Use Deep Learning VM Images and Deep Learning Containers with Vertex AI\n\nThis page describes the main features of Deep Learning VM\nand Deep Learning Containers, and\nhelps you understand how you might use these products with\nVertex AI.\n\nDeep Learning VM\n----------------\n\n### Overview\n\nDeep Learning VM Images is a set of\nvirtual machine images optimized for data science and machine\nlearning tasks. All images come with key ML frameworks and tools\npre-installed. You can use them out of the box on instances with\nGPUs to accelerate your data processing tasks.\n\nDeep Learning VM images are available to support many combinations\nof framework and processor. There are currently images supporting\n[TensorFlow Enterprise](/tensorflow-enterprise/docs),\nTensorFlow, PyTorch, and generic high-performance computing,\nwith versions for both CPU-only and GPU-enabled workflows.\n\nTo see a list of frameworks available, see [Choosing an\nimage](/deep-learning-vm/docs/images).\n\nTo learn more, see the [Deep Learning VM\ndocumentation](/deep-learning-vm/docs).\n\n### Using Deep Learning VM\n\nYou can use a Deep Learning VM instance as a part\nof your work in Vertex AI. For example, you can\ndevelop an application to run on a Deep Learning VM\ninstance to take advantage of its optimized data-processing capability.\nOr use a Deep Learning VM instance\nas a development environment for a self-managed distributed training\nsystem.\n\nYou can create Deep Learning VM instances on the\n[Deep Learning VM Cloud Marketplace\npage](https://console.cloud.google.com/marketplace/details/click-to-deploy-images/deeplearning)\nin the Google Cloud console.\n\n[Go to the Deep Learning VM Cloud Marketplace\npage](https://console.cloud.google.com/marketplace/details/click-to-deploy-images/deeplearning)\n\nDeep Learning Containers\n------------------------\n\n### Overview\n\nDeep Learning Containers are a set of Docker containers\nwith key data science frameworks, libraries, and tools pre-installed.\nThese containers provide you with performance-optimized, consistent\nenvironments that can help you prototype and implement workflows quickly.\n\nTo learn more, see the [Deep Learning Containers\ndocumentation](/deep-learning-containers/docs).\n\n### Using Deep Learning Containers\n\nYou can use a Deep Learning Containers instance as a part\nof your work in Vertex AI. For example, the [prebuilt containers\navailable on Vertex AI](/vertex-ai/docs/training/pre-built-containers)\nare integrated Deep Learning Containers.\n\nYou can also build your Vertex AI model as a\n[custom container](/vertex-ai/docs/training/containers-overview)-based application\nto help you deploy it in a consistent environment and run it wherever\nit needs to be.\n\nTo get started building your own custom container, follow these steps:\n\n1. Choose one of the available [container\n images](/deep-learning-containers/docs/choosing-container).\n\n2. See the relevant Vertex AI documentation on container\n requirements, such as [Custom containers for\n training](/vertex-ai/docs/training/containers-overview)\n and [Custom container requirements for\n prediction](/vertex-ai/docs/predictions/custom-container-requirements).\n\n Consider these requirements and prepare to modify your\n container accordingly.\n3. [Create a Deep Learning Containers local\n instance](/deep-learning-containers/docs/getting-started-local),\n while making sure to modify the container according to\n Vertex AI requirements.\n\n4. [Push the container to\n Artifact Registry](/vertex-ai/docs/training/create-custom-container#build-and-push-container).\n\nWhat's next\n-----------\n\n- Read [Introduction to\n Deep Learning VM](/deep-learning-vm/docs/introduction)\n to learn more about the product's features and capabilities.\n\n- To get started using Deep Learning VM, create a new\n instance [using\n Cloud Marketplace](/deep-learning-vm/docs/create-vm-instance-console)\n or [using the command\n line](/ai-platform/deep-learning-vm/docs/create-vm-instance-gcloud).\n\n- Read [Deep Learning Containers\n overview](/deep-learning-containers/docs/overview)\n to learn more about the product's features and capabilities.\n\n- To get started using Deep Learning Containers, [create\n a local deep learning\n container](/deep-learning-containers/docs/getting-started-local)."]]