Publication en ligne

La diffusion en ligne vous permet de diffuser des valeurs de caractéristiques pour de petits lots d'entités avec une faible latence. Pour chaque requête, vous ne pouvez diffuser que les valeurs de caractéristiques d'un seul type d'entité. Vertex AI Feature Store (ancien) ne renvoie que la dernière valeur non nulle de chaque caractéristique.

Vous utilisez généralement la livraison en ligne pour diffuser des valeurs de caractéristiques dans des modèles déployés pour les prédictions en ligne. Par exemple, imaginons que vous soyez propriétaire d'une entreprise de vélos. Vous souhaitez pouvoir prédire la durée de location d'un vélo lorsqu'un utilisateur particulier le loue. Vous pouvez inclure des entrées en temps réel de l'utilisateur et des données du featurestore pour effectuer une prédiction en ligne. Ainsi, vous pouvez déterminer l'allocation des ressources en temps réel.

Valeurs Null

Pour les résultats de livraison en ligne, si la dernière valeur d'une caractéristique est nulle, Vertex AI Feature Store (ancienne version) renvoie la dernière valeur non nulle. S'il n'y a pas de valeur précédente, Vertex AI Feature Store (ancien) renvoie une valeur nulle.

Avant de commencer

Vérifiez que le featurestore auquel vous adressez les appels dispose d'un magasin en ligne (le nombre de nœuds doit être supérieur à 0). Sinon, les requêtes de diffusion en ligne renvoient une erreur. Pour plus d'informations, consultez la section Gérer les magasins de caractéristiques.

Diffuser des valeurs à partir d'une seule entité

Diffusez des valeurs de caractéristiques à partir d'une seule entité pour un type d'entité particulier.

REST

Pour obtenir les valeurs de caractéristiques d'une entité, envoyez une requête POST à l'aide de la méthode featurestores.entityTypes.readFeatureValues.

L'exemple suivant obtient les dernières valeurs de deux caractéristiques différentes pour une entité spécifique. Notez que dans le champ ids, vous pouvez spécifier ["*"] au lieu des ID de caractéristiques pour sélectionner toutes les caractéristiques de l'entité.

Avant d'utiliser les données de requête ci-dessous, effectuez les remplacements suivants :

  • LOCATION_ID : région dans laquelle le featurestore est créé. Exemple :us-central1
  • PROJECT_ID : l'ID de votre projet.
  • FEATURESTORE_ID : ID du featurestore.
  • ENTITY_TYPE_ID : ID du type d'entité.
  • ENTITY_ID : ID de l'entité pour laquelle obtenir des valeurs de caractéristiques.
  • FEATURE_ID : ID de la caractéristique pour laquelle vous souhaitez obtenir des valeurs.

Méthode HTTP et URL :

POST https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID:readFeatureValues

Corps JSON de la requête :

{
  "entityId": "ENTITY_ID",
  "featureSelector": {
    "idMatcher": {
      "ids": ["FEATURE_ID_1", "FEATURE_ID_2"]
    }
  }
}

Pour envoyer votre requête, choisissez l'une des options suivantes :

curl

Enregistrez le corps de la requête dans un fichier nommé request.json, puis exécutez la commande suivante :

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID:readFeatureValues"

PowerShell

Enregistrez le corps de la requête dans un fichier nommé request.json, puis exécutez la commande suivante :

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID:readFeatureValues" | Select-Object -Expand Content

Vous devriez recevoir une réponse JSON de ce type :

{
  "header": {
    "entityType": "projects/PROJECT_NUMBER/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID",
    "featureDescriptors": [
      {
        "id": "FEATURE_ID_1"
      },
      {
        "id": "FEATURE_ID_2"
      }
    ]
  },
  "entityView": {
    "entityId": "ENTITY_ID",
    "data": [
      {
        "value": {
          "VALUE_TYPE_1": "FEATURE_VALUE_1",
          "metadata": {
            "generateTime": "2019-10-28T15:38:10Z"
          }
        }
      },
      {
        "value": {
          "VALUE_TYPE_2": "FEATURE_VALUE_2",
          "metadata": {
            "generateTime": "2019-10-28T15:38:10Z"
          }
        }
      }
    ]
  }
}

Python

Pour savoir comment installer ou mettre à jour le SDK Vertex AI pour Python, consultez la section Installer le SDK Vertex AI pour Python. Pour en savoir plus, consultez la documentation de référence de l'API Python.

from typing import List, Union

from google.cloud import aiplatform


def read_feature_values_sample(
    project: str,
    location: str,
    entity_type_id: str,
    featurestore_id: str,
    entity_ids: Union[str, List[str]],
    feature_ids: Union[str, List[str]] = "*",
):

    aiplatform.init(project=project, location=location)

    my_entity_type = aiplatform.featurestore.EntityType(
        entity_type_name=entity_type_id, featurestore_id=featurestore_id
    )

    my_dataframe = my_entity_type.read(entity_ids=entity_ids, feature_ids=feature_ids)

    return my_dataframe

Java

Avant d'essayer cet exemple, suivez les instructions de configuration pour Java décrites dans le guide de démarrage rapide de Vertex AI à l'aide des bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Vertex AI Java.

Pour vous authentifier auprès de Vertex AI, configurez le service Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.


import com.google.cloud.aiplatform.v1.EntityTypeName;
import com.google.cloud.aiplatform.v1.FeatureSelector;
import com.google.cloud.aiplatform.v1.FeaturestoreOnlineServingServiceClient;
import com.google.cloud.aiplatform.v1.FeaturestoreOnlineServingServiceSettings;
import com.google.cloud.aiplatform.v1.IdMatcher;
import com.google.cloud.aiplatform.v1.ReadFeatureValuesRequest;
import com.google.cloud.aiplatform.v1.ReadFeatureValuesResponse;
import java.io.IOException;
import java.util.Arrays;
import java.util.List;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeoutException;

public class ReadFeatureValuesSample {

  public static void main(String[] args)
      throws IOException, InterruptedException, ExecutionException, TimeoutException {
    // TODO(developer): Replace these variables before running the sample.
    String project = "YOUR_PROJECT_ID";
    // Feature Store ID
    String featurestoreId = "YOUR_FEATURESTORE_ID";
    // Entity Type ID
    String entityTypeId = "YOUR_ENTITY_TYPE_ID";
    // Entity ID
    String entityId = "YOUR_ENTITY_ID";
    // Features to read with batch or online serving.
    List<String> featureSelectorIds = Arrays.asList("title", "genres", "average_rating");
    String location = "us-central1";
    String endpoint = "us-central1-aiplatform.googleapis.com:443";
    int timeout = 300;

    readFeatureValuesSample(
        project,
        featurestoreId,
        entityTypeId,
        entityId,
        featureSelectorIds,
        location,
        endpoint,
        timeout);
  }

  /*
   * Reads Feature values of a specific entity of an EntityType.
   * See: https://cloud.google.com/vertex-ai/docs/featurestore/serving-online
   */
  public static void readFeatureValuesSample(
      String project,
      String featurestoreId,
      String entityTypeId,
      String entityId,
      List<String> featureSelectorIds,
      String location,
      String endpoint,
      int timeout)
      throws IOException, InterruptedException, ExecutionException, TimeoutException {
    FeaturestoreOnlineServingServiceSettings featurestoreOnlineServiceSettings =
        FeaturestoreOnlineServingServiceSettings.newBuilder().setEndpoint(endpoint).build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (FeaturestoreOnlineServingServiceClient featurestoreOnlineServiceClient =
        FeaturestoreOnlineServingServiceClient.create(featurestoreOnlineServiceSettings)) {
      ReadFeatureValuesRequest readFeatureValuesRequest =
          ReadFeatureValuesRequest.newBuilder()
              .setEntityType(
                  EntityTypeName.of(project, location, featurestoreId, entityTypeId).toString())
              .setEntityId(entityId)
              .setFeatureSelector(
                  FeatureSelector.newBuilder()
                      .setIdMatcher(IdMatcher.newBuilder().addAllIds(featureSelectorIds)))
              .build();

      ReadFeatureValuesResponse readFeatureValuesResponse =
          featurestoreOnlineServiceClient.readFeatureValues(readFeatureValuesRequest);
      System.out.println("Read Feature Values Response" + readFeatureValuesResponse);
    }
  }
}

Node.js

Avant d'essayer cet exemple, suivez les instructions de configuration pour Node.js décrites dans le guide de démarrage rapide de Vertex AI à l'aide des bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Vertex AI Node.js.

Pour vous authentifier auprès de Vertex AI, configurez le service Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.

/**
 * TODO(developer): Uncomment these variables before running the sample.\
 * (Not necessary if passing values as arguments)
 */

// const project = 'YOUR_PROJECT_ID';
// const featurestoreId = 'YOUR_FEATURESTORE_ID';
// const entityTypeId = 'YOUR_ENTITY_TYPE_ID';
// const entityId = 'ENTITY_ID_TO_SERVE';
// const location = 'YOUR_PROJECT_LOCATION';
// const apiEndpoint = 'YOUR_API_ENDPOINT';
// const timeout = <TIMEOUT_IN_MILLI_SECONDS>;

// Imports the Google Cloud Featurestore Service Client library
const {FeaturestoreOnlineServingServiceClient} =
  require('@google-cloud/aiplatform').v1;

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: apiEndpoint,
};

// Instantiates a client
const featurestoreOnlineServingServiceClient =
  new FeaturestoreOnlineServingServiceClient(clientOptions);

async function readFeatureValues() {
  // Configure the entityType resource
  const entityType = `projects/${project}/locations/${location}/featurestores/${featurestoreId}/entityTypes/${entityTypeId}`;

  const featureSelector = {
    idMatcher: {
      ids: ['age', 'gender', 'liked_genres'],
    },
  };

  const request = {
    entityType: entityType,
    entityId: entityId,
    featureSelector: featureSelector,
  };

  // Read Feature Values Request
  const [response] =
    await featurestoreOnlineServingServiceClient.readFeatureValues(request, {
      timeout: Number(timeout),
    });

  console.log('Read feature values response');
  console.log('Raw response:');
  console.log(JSON.stringify(response, null, 2));
}
readFeatureValues();

Diffuser des valeurs à partir de plusieurs entités

Diffuser des valeurs de caractéristiques à partir d'une ou de plusieurs entités pour un type d'entité particulier. Pour de meilleures performances, utilisez la méthode streamingReadFeatureValues au lieu d'envoyer des requêtes parallèles à la méthode readFeatureValues.

REST

Pour obtenir des valeurs de caractéristiques à partir de plusieurs entités, envoyez une requête POST à l'aide de la méthode featurestores.entityTypes.streamingReadFeatureValues.

L'exemple suivant récupère les dernières valeurs de deux caractéristiques différentes pour deux entités différentes. Notez que dans le champ ids, vous pouvez spécifier ["*"] au lieu des ID de caractéristiques pour sélectionner toutes les caractéristiques de l'entité.

Avant d'utiliser les données de requête ci-dessous, effectuez les remplacements suivants :

  • LOCATION_ID : région dans laquelle le featurestore est créé. Exemple :us-central1
  • PROJECT_ID : l'ID de votre projet.
  • FEATURESTORE_ID : ID du featurestore.
  • ENTITY_TYPE_ID : ID du type d'entité.
  • ENTITY_ID : ID de l'entité pour laquelle obtenir des valeurs de caractéristiques.
  • FEATURE_ID : ID de la caractéristique pour laquelle vous souhaitez obtenir des valeurs.

Méthode HTTP et URL :

POST https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID:streamingReadFeatureValues

Corps JSON de la requête :

{
  "entityIds": ["ENTITY_ID_1", "ENTITY_ID_2"],
  "featureSelector": {
    "idMatcher": {
      "ids": ["FEATURE_ID_1", "FEATURE_ID_2"]
    }
  }
}

Pour envoyer votre requête, choisissez l'une des options suivantes :

curl

Enregistrez le corps de la requête dans un fichier nommé request.json, puis exécutez la commande suivante :

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID:streamingReadFeatureValues"

PowerShell

Enregistrez le corps de la requête dans un fichier nommé request.json, puis exécutez la commande suivante :

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID:streamingReadFeatureValues" | Select-Object -Expand Content

Vous devriez recevoir une réponse JSON de ce type :

[{
  "header": {
    "entityType": "projects/PROJECT_NUMBER/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID",
    "featureDescriptors": [
      {
        "id": "FEATURE_ID_1"
      },
      {
        "id": "FEATURE_ID_2"
      }
    ]
  }
},
{
  "entityView": {
    "entityId": "ENTITY_ID_1",
    "data": [
      {
        "value": {
          "VALUE_TYPE_1": "FEATURE_VALUE_A",
          "metadata": {
            "generateTime": "2019-10-28T15:38:10Z"
          }
        }
      },
      {
        "value": {
          "VALUE_TYPE_2": "FEATURE_VALUE_B",
          "metadata": {
            "generateTime": "2019-10-28T15:38:10Z"
          }
        }
      }
    ]
  }
},
{
  "entityView": {
    "entityId": "ENTITY_ID_2",
    "data": [
      {
        "value": {
          "VALUE_TYPE_1": "FEATURE_VALUE_C",
          "metadata": {
            "generateTime": "2019-10-28T21:21:37Z"
          }
        }
      },
      {
        "value": {
          "VALUE_TYPE_2": "FEATURE_VALUE_D",
          "metadata": {
            "generateTime": "2019-10-28T21:21:37Z"
          }
        }
      }
    ]
  }
}]

Langages supplémentaires

Vous pouvez installer et utiliser les bibliothèques clientes Vertex AI suivantes pour appeler l'API Vertex AI. Les bibliothèques clientes Google Cloud optimisent l'expérience des développeurs en utilisant les conventions et le style naturels de chaque langage disponible.

Étape suivante