Hier erfahren Sie, wie Sie Features verwalten und finden.
Feature erstellen
Erstellen Sie ein einzelnes Feature für einen vorhandenen Entitätstyp. Informationen zum Erstellen mehrerer Features in einer einzigen Anfrage finden Sie unter Features der Batcherstellung.
Web-UI
- Rufen Sie im Bereich "Vertex AI" der Google Cloud Console die Seite Features auf.
- Wählen Sie eine Region aus der Drop-down-Liste Region aus.
- Rufen Sie in der Tabelle „Features“ die Spalte Entitätstyp auf und klicken Sie auf den Entitätstyp, dem Sie Features hinzufügen möchten.
- Klicken Sie auf Features hinzufügen, um den Bereich Features hinzufügen zu öffnen.
- Geben Sie einen Namen, einen Werttyp und optional eine Beschreibung für das Feature an.
- Wählen Sie zum Aktivieren des Feature-Monitoring (Vorschau) unter Feature-Monitoring die Option Monitoring-Konfiguration für Entitätstyp überschreiben aus und geben Sie die Anzahl der Tage zwischen Snapshots an. Diese Konfiguration überschreibt alle vorhandenen oder zukünftigen Monitoringkonfigurationen für den Entitätstyp des Features. Weitere Informationen finden Sie unter Featurewert-Monitoring.
- Wenn Sie weitere Features hinzufügen möchten, klicken Sie auf Weiteres Feature hinzufügen.
- Klicken Sie auf Speichern.
REST
Wenn Sie ein Feature für einen vorhandenen Entitätstyp erstellen möchten, senden Sie eine POST-Anfrage mit der Methode featurestores.entityTypes.features.create.
Ersetzen Sie diese Werte in den folgenden Anfragedaten:
- LOCATION_ID: Die Region, in der sich der Featurestore befindet, z. B.
us-central1
. - PROJECT_ID: Ihre Projekt-ID.
- FEATURESTORE_ID: ID des Featurestores.
- ENTITY_TYPE_ID: ID des Entitätstyps.
- FEATURE_ID: Eine ID für das Feature.
- DESCRIPTION: Beschreibung der Funktion.
- VALUE_TYPE: Der Werttyp des Features.
HTTP-Methode und URL:
POST https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID?featureId=FEATURE_ID
JSON-Text der Anfrage:
{ "description": "DESCRIPTION", "valueType": "VALUE_TYPE" }
Wenn Sie die Anfrage senden möchten, wählen Sie eine der folgenden Optionen aus:
curl
Speichern Sie den Anfragetext in einer Datei mit dem Namen request.json
und führen Sie den folgenden Befehl aus:
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID?featureId=FEATURE_ID"
PowerShell
Speichern Sie den Anfragetext in einer Datei mit dem Namen request.json
und führen Sie den folgenden Befehl aus:
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID?featureId=FEATURE_ID" | Select-Object -Expand Content
Die Ausgabe sieht in etwa so aus: Sie können OPERATION_ID in der Antwort verwenden, um den Status des Vorgangs abzurufen.
{ "name": "projects/PROJECT_NUMBER/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/operations/OPERATION_ID", "metadata": { "@type": "type.googleapis.com/google.cloud.aiplatform.v1.CreateFeatureOperationMetadata", "genericMetadata": { "createTime": "2021-03-02T00:04:13.039166Z", "updateTime": "2021-03-02T00:04:13.039166Z" } } }
Python
Informationen zur Installation des Vertex AI SDK for Python finden Sie unter Vertex AI SDK for Python installieren. Weitere Informationen finden Sie in der Referenzdokumentation zur Python API.
Python
Die Clientbibliothek für Vertex AI ist bei der Installation des Vertex AI SDK für Python enthalten. Informationen zur Installation des Vertex AI SDK für Python finden Sie unter Vertex AI SDK für Python installieren. Weitere Informationen finden Sie in der Referenzdokumentation zur Vertex AI SDK for Python API.
Java
Bevor Sie dieses Beispiel anwenden, folgen Sie den Java-Einrichtungsschritten in der Vertex AI-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Vertex AI Java API.
Richten Sie zur Authentifizierung bei Vertex AI Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.
Node.js
Bevor Sie dieses Beispiel anwenden, folgen Sie den Node.js-Einrichtungsschritten in der Vertex AI-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Vertex AI Node.js API.
Richten Sie zur Authentifizierung bei Vertex AI Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.
Features im Batch erstellen
Mehrere Funktionen für einen vorhandenen Typ erstellen Bei Anfragen für Batcherstellungen erstellt der Vertex AI Feature Store (Legacy) mehrere Features gleichzeitig, was für das Erstellen einer großen Anzahl von Features im Vergleich zur Methode featurestores.entityTypes.features.create
schneller ist.
Web-UI
Siehe Feature erstellen.
REST
Senden Sie mit der Methode featurestores.entityTypes.features.batchCreate eine POST-Anfrage, um ein oder mehrere Features für einen vorhandenen Entitätstyp zu erstellen. Dies wird im folgenden Beispiel gezeigt:
Ersetzen Sie diese Werte in den folgenden Anfragedaten:
- LOCATION_ID: Die Region, in der sich der Featurestore befindet, z. B.
us-central1
. - PROJECT_ID: Ihre Projekt-ID.
- FEATURESTORE_ID: ID des Featurestores.
- ENTITY_TYPE_ID: ID des Entitätstyps.
- PARENT: Der Ressourcenname des Entitätstyps, unter dem die Features erstellt werden.
Erforderliches Format:
projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID
- FEATURE_ID: Eine ID für das Feature.
- DESCRIPTION: Beschreibung der Funktion.
- VALUE_TYPE: Der Werttyp des Features.
- DURATION: (Optional) Die Intervalldauer zwischen den Snapshots in Sekunden. Der Wert muss mit einem „s“ enden.
HTTP-Methode und URL:
POST https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID/features:batchCreate
JSON-Text der Anfrage:
{ "requests": [ { "parent" : "PARENT_1", "feature": { "description": "DESCRIPTION_1", "valueType": "VALUE_TYPE_1", "monitoringConfig": { "snapshotAnalysis": { "monitoringInterval": "DURATION" } } }, "featureId": "FEATURE_ID_1" }, { "parent" : "PARENT_2", "feature": { "description": "DESCRIPTION_2", "valueType": "VALUE_TYPE_2", "monitoringConfig": { "snapshotAnalysis": { "monitoringInterval": "DURATION" } } }, "featureId": "FEATURE_ID_2" } ] }
Wenn Sie die Anfrage senden möchten, wählen Sie eine der folgenden Optionen aus:
curl
Speichern Sie den Anfragetext in einer Datei mit dem Namen request.json
und führen Sie den folgenden Befehl aus:
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID/features:batchCreate"
PowerShell
Speichern Sie den Anfragetext in einer Datei mit dem Namen request.json
und führen Sie den folgenden Befehl aus:
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID/features:batchCreate" | Select-Object -Expand Content
Die Ausgabe sieht in etwa so aus: Sie können OPERATION_ID in der Antwort verwenden, um den Status des Vorgangs abzurufen.
{ "name": "projects/PROJECT_NUMBER/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/operations/OPERATION_ID", "metadata": { "@type": "type.googleapis.com/google.cloud.aiplatform.v1.BatchCreateFeaturesOperationMetadata", "genericMetadata": { "createTime": "2021-03-02T00:04:13.039166Z", "updateTime": "2021-03-02T00:04:13.039166Z" } } }
Python
Informationen zur Installation des Vertex AI SDK for Python finden Sie unter Vertex AI SDK for Python installieren. Weitere Informationen finden Sie in der Referenzdokumentation zur Python API.
Python
Die Clientbibliothek für Vertex AI ist bei der Installation des Vertex AI SDK für Python enthalten. Informationen zur Installation des Vertex AI SDK für Python finden Sie unter Vertex AI SDK für Python installieren. Weitere Informationen finden Sie in der Referenzdokumentation zur Vertex AI SDK for Python API.
Java
Bevor Sie dieses Beispiel anwenden, folgen Sie den Java-Einrichtungsschritten in der Vertex AI-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Vertex AI Java API.
Richten Sie zur Authentifizierung bei Vertex AI Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.
Node.js
Bevor Sie dieses Beispiel anwenden, folgen Sie den Node.js-Einrichtungsschritten in der Vertex AI-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Vertex AI Node.js API.
Richten Sie zur Authentifizierung bei Vertex AI Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.
Features auflisten
Listen Sie alle Features in einem bestimmten Speicherort auf. Informationen zum Suchen nach Features für alle Entitätstypen und Feature Stores in einem bestimmten Speicherort finden Sie unter der Methode Nach Features suchen.
Web-UI
- Rufen Sie im Bereich "Vertex AI" der Google Cloud Console die Seite Features auf.
- Wählen Sie eine Region aus der Drop-down-Liste Region aus.
- In der Tabelle Features sehen Sie in der Spalte Features die Features in Ihrem Projekt für die ausgewählte Region.
REST
Zum Auflisten aller Features für einen einzelnen Entitätstyp senden Sie eine GET-Anfrage mit der Methode featurestores.entityTypes.features.list.
Ersetzen Sie diese Werte in den folgenden Anfragedaten:
- LOCATION_ID: Die Region, in der sich der Featurestore befindet, z. B.
us-central1
. - PROJECT_ID: Ihre Projekt-ID.
- FEATURESTORE_ID: ID des Featurestores.
- ENTITY_TYPE_ID: ID des Entitätstyps.
HTTP-Methode und URL:
GET https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID/features
Senden Sie die Anfrage mithilfe einer der folgenden Optionen:
curl
Führen Sie folgenden Befehl aus:
curl -X GET \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
"https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID/features"
PowerShell
Führen Sie folgenden Befehl aus:
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }
Invoke-WebRequest `
-Method GET `
-Headers $headers `
-Uri "https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID/features" | Select-Object -Expand Content
Sie sollten in etwa folgende JSON-Antwort erhalten:
{ "features": [ { "name": "projects/PROJECT_NUMBER/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID/features/FEATURE_ID_1", "description": "DESCRIPTION", "valueType": "VALUE_TYPE", "createTime": "2021-03-01T22:41:20.626644Z", "updateTime": "2021-03-01T22:41:20.626644Z", "labels": { "environment": "testing" }, "etag": "AMEw9yP0qJeLao6P3fl9cKEGY4ie5-SanQaiN7c_Ca4QOa0u7AxwO6i75Vbp0Cr51MSf" }, { "name": "projects/PROJECT_NUMBER/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID/features/FEATURE_ID_2", "description": "DESCRIPTION", "valueType": "VALUE_TYPE", "createTime": "2021-02-25T01:27:00.544230Z", "updateTime": "2021-02-25T01:27:00.544230Z", "labels": { "environment": "testing" }, "etag": "AMEw9yMdrLZ7Waty0ane-DkHq4kcsIVC-piqJq7n6A_Y-BjNzPY4rNlokDHNyUqC7edw" }, { "name": "projects/PROJECT_NUMBER/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID/features/FEATURE_ID_3", "description": "DESCRIPTION", "valueType": "VALUE_TYPE", "createTime": "2021-03-01T22:41:20.628493Z", "updateTime": "2021-03-01T22:41:20.628493Z", "labels": { "environment": "testing" }, "etag": "AMEw9yM-sAkv-u-jzkUOToaAVovK7GKbrubd9DbmAonik-ojTWG8-hfSRYt6jHKRTQ35" } ] }
Java
Bevor Sie dieses Beispiel anwenden, folgen Sie den Java-Einrichtungsschritten in der Vertex AI-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Vertex AI Java API.
Richten Sie zur Authentifizierung bei Vertex AI Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.
Node.js
Bevor Sie dieses Beispiel anwenden, folgen Sie den Node.js-Einrichtungsschritten in der Vertex AI-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Vertex AI Node.js API.
Richten Sie zur Authentifizierung bei Vertex AI Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.
Weitere Sprachen
Informationen zum Installieren und Verwenden des Vertex AI SDK für Python finden Sie unter Vertex AI SDK für Python verwenden. Weitere Informationen finden Sie in der Referenzdokumentation zur Vertex AI SDK for Python API.
Nach Features suchen
Suchen Sie anhand von einer oder mehreren Eigenschaften nach Features, z. B. Feature-ID, Entitätstyp-ID oder Featurebeschreibung. Vertex AI Feature Store (Legacy) durchsucht alle Featurestores und Entitätstypen an einem bestimmten Standort. Sie können die Ergebnisse auch eingrenzen, indem Sie nach bestimmten Featurestores, Werttypen und Labels filtern.
Informationen zum Auflisten aller Features finden Sie unter Features auflisten.
Web-UI
- Rufen Sie im Bereich "Vertex AI" der Google Cloud Console die Seite Features auf.
- Wählen Sie eine Region aus der Drop-down-Liste Region aus.
- Klicken Sie in der Features-Tabelle auf das Feld Filter.
- Wählen Sie eine Eigenschaft aus, nach der gefiltert werden soll, z. B. Feature, was Features zurückgibt, die an einer beliebigen Stelle in ihrer ID einen übereinstimmenden String enthalten.
- Geben Sie einen Wert für den Filter ein und drücken Sie die Eingabetaste. Vertex AI Feature Store (Legacy) gibt Ergebnisse in der Funktionstabelle zurück.
- Wenn Sie weitere Filter hinzufügen möchten, klicken Sie noch einmal auf das Feld Filter.
REST
Senden Sie zum Suchen nach Features eine GET-Anfrage mit der Methode featurestores.searchFeatures. Im folgenden Beispiel werden mehrere Suchparameter verwendet, die als featureId:test AND valueType=STRING
geschrieben werden. Die Abfrage gibt Features zurück, die test
in ihrer ID enthalten und deren Werte vom Typ STRING
sind.
Ersetzen Sie diese Werte in den folgenden Anfragedaten:
- LOCATION_ID: Die Region, in der sich der Featurestore befindet, z. B.
us-central1
. - PROJECT_ID: Ihre Projekt-ID.
HTTP-Methode und URL:
GET https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores:searchFeatures?query="featureId:test%20AND%20valueType=STRING"
Senden Sie die Anfrage mithilfe einer der folgenden Optionen:
curl
Führen Sie folgenden Befehl aus:
curl -X GET \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
"https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores:searchFeatures?query="featureId:test%20AND%20valueType=STRING""
PowerShell
Führen Sie folgenden Befehl aus:
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }
Invoke-WebRequest `
-Method GET `
-Headers $headers `
-Uri "https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores:searchFeatures?query="featureId:test%20AND%20valueType=STRING"" | Select-Object -Expand Content
Sie sollten in etwa folgende JSON-Antwort erhalten:
{ "features": [ { "name": "projects/PROJECT_NUMBER/locations/LOCATION_IDfeature-delete.html/featurestores/featurestore_demo/entityTypes/testing/features/test1", "description": "featurestore test1", "createTime": "2021-02-26T18:16:09.528185Z", "updateTime": "2021-02-26T18:16:09.528185Z", "labels": { "environment": "testing" } } ] }
Java
Bevor Sie dieses Beispiel anwenden, folgen Sie den Java-Einrichtungsschritten in der Vertex AI-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Vertex AI Java API.
Richten Sie zur Authentifizierung bei Vertex AI Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.
Node.js
Bevor Sie dieses Beispiel anwenden, folgen Sie den Node.js-Einrichtungsschritten in der Vertex AI-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Vertex AI Node.js API.
Richten Sie zur Authentifizierung bei Vertex AI Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.
Weitere Sprachen
Informationen zum Installieren und Verwenden des Vertex AI SDK für Python finden Sie unter Vertex AI SDK für Python verwenden. Weitere Informationen finden Sie in der Referenzdokumentation zur Vertex AI SDK for Python API.
Featuredetails ansehen
Sie können sich Details zu einem Feature wie den Werttyp oder die Beschreibung ansehen. Wenn Sie die Google Cloud Console verwenden und das Feature-Monitoring aktiviert haben, können Sie auch die Verteilung der Featurewerte im Zeitverlauf einsehen.
Web-UI
- Rufen Sie im Bereich "Vertex AI" der Google Cloud Console die Seite Features auf.
- Wählen Sie eine Region aus der Drop-down-Liste Region aus.
- In der Features-Tabelle sehen Sie in der Spalte Features das Feature, dessen Details Sie sich ansehen möchten.
- Klicken Sie auf den Namen eines Features, um dessen Details aufzurufen.
- Klicken Sie auf Messwerte, um seine Messwerte aufzurufen. Vertex AI Feature Store (Legacy) bietet Verteilungsmesswerte für das Feature.
REST
Wenn Sie Details zu einem Feature abrufen möchten, senden Sie eine GET-Anfrage mit der Methode featurestores.entityTypes.features.get.
Ersetzen Sie diese Werte in den folgenden Anfragedaten:
- LOCATION_ID: Die Region, in der sich der Featurestore befindet, z. B.
us-central1
. - PROJECT_ID: Ihre Projekt-ID.
- FEATURESTORE_ID: ID des Featurestores.
- ENTITY_TYPE_ID: ID des Entitätstyps.
- FEATURE_ID: ID des Features.
HTTP-Methode und URL:
GET https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID/features/FEATURE_ID
Senden Sie die Anfrage mithilfe einer der folgenden Optionen:
curl
Führen Sie folgenden Befehl aus:
curl -X GET \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
"https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID/features/FEATURE_ID"
PowerShell
Führen Sie folgenden Befehl aus:
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }
Invoke-WebRequest `
-Method GET `
-Headers $headers `
-Uri "https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID/features/FEATURE_ID" | Select-Object -Expand Content
Sie sollten in etwa folgende JSON-Antwort erhalten:
{ "name": "projects/PROJECT_NUMBER/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID/features/FEATURE_ID", "description": "DESCRIPTION", "valueType": "VALUE_TYPE", "createTime": "2021-03-01T22:41:20.628493Z", "updateTime": "2021-03-01T22:41:20.628493Z", "labels": { "environment": "testing" }, "etag": "AMEw9yOZbdYKHTyjV22ziZR1vUX3nWOi0o2XU3-OADahSdfZ8Apklk_qPruhF-o1dOSD", "monitoringConfig": {} }
Java
Bevor Sie dieses Beispiel anwenden, folgen Sie den Java-Einrichtungsschritten in der Vertex AI-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Vertex AI Java API.
Richten Sie zur Authentifizierung bei Vertex AI Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.
Node.js
Bevor Sie dieses Beispiel anwenden, folgen Sie den Node.js-Einrichtungsschritten in der Vertex AI-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Vertex AI Node.js API.
Richten Sie zur Authentifizierung bei Vertex AI Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.
Weitere Sprachen
Informationen zum Installieren und Verwenden des Vertex AI SDK für Python finden Sie unter Vertex AI SDK für Python verwenden. Weitere Informationen finden Sie in der Referenzdokumentation zur Vertex AI SDK for Python API.
Feature löschen
Löscht ein Feature und alle zugehörigen Werte.
Web-UI
- Rufen Sie im Bereich "Vertex AI" der Google Cloud Console die Seite Features auf.
- Wählen Sie eine Region aus der Drop-down-Liste Region aus.
- Suchen Sie in der Features-Tabelle die Spalte Feature das Feature, das Sie löschen möchten.
- Klicken Sie auf den Namen des Features.
- Klicken Sie in der Aktionsleiste auf Löschen.
- Klicken Sie auf Bestätigen, um das Feature und seine Werte zu löschen.
REST
Senden Sie eine DELETE-Anfrage mit der Methode featurestores.entityTypes.features.delete, um ein Feature zu löschen.
Ersetzen Sie diese Werte in den folgenden Anfragedaten:
- LOCATION_ID: Die Region, in der sich der Featurestore befindet, z. B.
us-central1
. - PROJECT_ID: Ihre Projekt-ID.
- FEATURESTORE_ID: ID des Featurestores.
- ENTITY_TYPE_ID: ID des Entitätstyps.
- FEATURE_ID: ID des Features.
HTTP-Methode und URL:
DELETE https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID/features/FEATURE_ID
Senden Sie die Anfrage mithilfe einer der folgenden Optionen:
curl
Führen Sie folgenden Befehl aus:
curl -X DELETE \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
"https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID/features/FEATURE_ID"
PowerShell
Führen Sie folgenden Befehl aus:
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }
Invoke-WebRequest `
-Method DELETE `
-Headers $headers `
-Uri "https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID/features/FEATURE_ID" | Select-Object -Expand Content
Sie sollten in etwa folgende JSON-Antwort erhalten:
{ "name": "projects/PROJECT_NUMBER/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/operations/OPERATION_ID", "metadata": { "@type": "type.googleapis.com/google.cloud.aiplatform.v1.DeleteOperationMetadata", "genericMetadata": { "createTime": "2021-02-26T17:32:56.008325Z", "updateTime": "2021-02-26T17:32:56.008325Z" } }, "done": true, "response": { "@type": "type.googleapis.com/google.protobuf.Empty" } }
Java
Bevor Sie dieses Beispiel anwenden, folgen Sie den Java-Einrichtungsschritten in der Vertex AI-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Vertex AI Java API.
Richten Sie zur Authentifizierung bei Vertex AI Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.
Node.js
Bevor Sie dieses Beispiel anwenden, folgen Sie den Node.js-Einrichtungsschritten in der Vertex AI-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Vertex AI Node.js API.
Richten Sie zur Authentifizierung bei Vertex AI Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.
Weitere Sprachen
Informationen zum Installieren und Verwenden des Vertex AI SDK für Python finden Sie unter Vertex AI SDK für Python verwenden. Weitere Informationen finden Sie in der Referenzdokumentation zur Vertex AI SDK for Python API.
Nächste Schritte
- Featurewerte im Batchverfahren importieren
- Importierte Featurewerte im Zeitverlauf beobachten
- Weitere Informationen zum Bereitstellen von Features finden Sie unter Onlinebereitstellung oder Batchbereitstellung.
- Fehlerbehebung bei häufigen Problemen mit Vertex AI Feature Store (Legacy)