Gerenciar e encontrar recursos

Saiba como gerenciar e encontrar recursos.

Criar um recurso

Crie um único recurso para um tipo de entidade atual. Para criar vários recursos em uma única solicitação, consulte Recursos de criação em lote.

IU da Web

  1. Na seção "Vertex AI" do Console do Google Cloud, acesse a página Recursos.

    Acessar a página Recursos

  2. Selecione uma região na lista suspensa Região.
  3. Na tabela de recursos, visualize a coluna Tipo de entidade e clique no tipo de entidade para adicionar recursos.
  4. Clique em Adicionar recursos para abrir o painel Adicionar recursos.
  5. Especifique um nome, tipo de valor e, opcionalmente, uma descrição para o recurso.
  6. Para ativar o monitoramento do valor do recurso (Visualização), em Monitoramento de recursos, selecione Modificar a configuração do monitoramento do tipo de entidade e digite o número de dias entre snapshots. Essa configuração modifica qualquer configuração de monitoramento atual ou futura no tipo de entidade do recurso. Para mais informações, consulte Monitoramento do valor do recurso.
  7. Para adicionar mais elementos, clique em Adicionar outro recurso.
  8. Clique em Save.

REST

Para criar um recurso para um tipo de entidade atual, envie uma solicitação POST usando o método featurestores.entityTypes.features.create.

Antes de usar os dados da solicitação abaixo, faça as substituições a seguir:

  • LOCATION_ID: região em que featurestore está localizada, como us-central1.
  • PROJECT_ID: o ID do projeto.
  • FEATURESTORE_ID: ID do featurestore.
  • ENTITY_TYPE_ID: código do tipo de entidade.
  • FEATURE_ID: um ID do recurso.
  • DESCRIPTION: descrição do recurso.
  • VALUE_TYPE: o tipo de valor do recurso.

Método HTTP e URL:

POST https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID?featureId=FEATURE_ID

Corpo JSON da solicitação:

{
  "description": "DESCRIPTION",
  "valueType": "VALUE_TYPE"
}

Para enviar a solicitação, escolha uma destas opções:

curl

Salve o corpo da solicitação em um arquivo com o nome request.json e execute o comando a seguir:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID?featureId=FEATURE_ID"

PowerShell

Salve o corpo da solicitação em um arquivo com o nome request.json e execute o comando a seguir:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID?featureId=FEATURE_ID" | Select-Object -Expand Content

Será exibido um código semelhante a este. Use OPERATION_ID na resposta para ver o status da operação.

{
  "name": "projects/PROJECT_NUMBER/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/operations/OPERATION_ID",
  "metadata": {
    "@type": "type.googleapis.com/google.cloud.aiplatform.v1.CreateFeatureOperationMetadata",
    "genericMetadata": {
      "createTime": "2021-03-02T00:04:13.039166Z",
      "updateTime": "2021-03-02T00:04:13.039166Z"
    }
  }
}

Python

Para saber como instalar o SDK da Vertex AI para Python, consulte Instalar o SDK da Vertex AI para Python. Para mais informações, consulte a documentação de referência da API Python.

from google.cloud import aiplatform


def create_feature_sample(
    project: str,
    location: str,
    feature_id: str,
    value_type: str,
    entity_type_id: str,
    featurestore_id: str,
):

    aiplatform.init(project=project, location=location)

    my_feature = aiplatform.Feature.create(
        feature_id=feature_id,
        value_type=value_type,
        entity_type_name=entity_type_id,
        featurestore_id=featurestore_id,
    )

    my_feature.wait()

    return my_feature

Java

Antes de testar esse exemplo, siga as instruções de configuração para Java no Guia de início rápido da Vertex AI sobre como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vertex AI para Java.

Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.


import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.aiplatform.v1.CreateFeatureOperationMetadata;
import com.google.cloud.aiplatform.v1.CreateFeatureRequest;
import com.google.cloud.aiplatform.v1.EntityTypeName;
import com.google.cloud.aiplatform.v1.Feature;
import com.google.cloud.aiplatform.v1.Feature.ValueType;
import com.google.cloud.aiplatform.v1.FeaturestoreServiceClient;
import com.google.cloud.aiplatform.v1.FeaturestoreServiceSettings;
import java.io.IOException;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;

public class CreateFeatureSample {

  public static void main(String[] args)
      throws IOException, InterruptedException, ExecutionException, TimeoutException {
    // TODO(developer): Replace these variables before running the sample.
    String project = "YOUR_PROJECT_ID";
    String featurestoreId = "YOUR_FEATURESTORE_ID";
    String entityTypeId = "YOUR_ENTITY_TYPE_ID";
    String featureId = "YOUR_FEATURE_ID";
    String description = "YOUR_FEATURE_DESCRIPTION";
    ValueType valueType = ValueType.STRING;
    String location = "us-central1";
    String endpoint = "us-central1-aiplatform.googleapis.com:443";
    int timeout = 900;
    createFeatureSample(
        project,
        featurestoreId,
        entityTypeId,
        featureId,
        description,
        valueType,
        location,
        endpoint,
        timeout);
  }

  static void createFeatureSample(
      String project,
      String featurestoreId,
      String entityTypeId,
      String featureId,
      String description,
      ValueType valueType,
      String location,
      String endpoint,
      int timeout)
      throws IOException, InterruptedException, ExecutionException, TimeoutException {

    FeaturestoreServiceSettings featurestoreServiceSettings =
        FeaturestoreServiceSettings.newBuilder().setEndpoint(endpoint).build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (FeaturestoreServiceClient featurestoreServiceClient =
        FeaturestoreServiceClient.create(featurestoreServiceSettings)) {

      Feature feature =
          Feature.newBuilder().setDescription(description).setValueType(valueType).build();

      CreateFeatureRequest createFeatureRequest =
          CreateFeatureRequest.newBuilder()
              .setParent(
                  EntityTypeName.of(project, location, featurestoreId, entityTypeId).toString())
              .setFeature(feature)
              .setFeatureId(featureId)
              .build();

      OperationFuture<Feature, CreateFeatureOperationMetadata> featureFuture =
          featurestoreServiceClient.createFeatureAsync(createFeatureRequest);
      System.out.format("Operation name: %s%n", featureFuture.getInitialFuture().get().getName());
      System.out.println("Waiting for operation to finish...");
      Feature featureResponse = featureFuture.get(timeout, TimeUnit.SECONDS);
      System.out.println("Create Feature Response");
      System.out.format("Name: %s%n", featureResponse.getName());
      featurestoreServiceClient.close();
    }
  }
}

Node.js

Antes de testar esse exemplo, siga as instruções de configuração para Node.js no Guia de início rápido da Vertex AI sobre como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vertex AI para Node.js.

Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

/**
 * TODO(developer): Uncomment these variables before running the sample.\
 * (Not necessary if passing values as arguments)
 */

// const project = 'YOUR_PROJECT_ID';
// const featurestoreId = 'YOUR_FEATURESTORE_ID';
// const entityTypeId = 'YOUR_ENTITY_TYPE_ID';
// const featureId = 'YOUR_FEATURE_ID';
// const valueType = 'FEATURE_VALUE_DATA_TYPE';
// const description = 'YOUR_ENTITY_TYPE_DESCRIPTION';
// const location = 'YOUR_PROJECT_LOCATION';
// const apiEndpoint = 'YOUR_API_ENDPOINT';
// const timeout = <TIMEOUT_IN_MILLI_SECONDS>;

// Imports the Google Cloud Featurestore Service Client library
const {FeaturestoreServiceClient} = require('@google-cloud/aiplatform').v1;

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: apiEndpoint,
};

// Instantiates a client
const featurestoreServiceClient = new FeaturestoreServiceClient(
  clientOptions
);

async function createFeature() {
  // Configure the parent resource
  const parent = `projects/${project}/locations/${location}/featurestores/${featurestoreId}/entityTypes/${entityTypeId}`;

  const feature = {
    valueType: valueType,
    description: description,
  };

  const request = {
    parent: parent,
    feature: feature,
    featureId: featureId,
  };

  // Create Feature request
  const [operation] = await featurestoreServiceClient.createFeature(request, {
    timeout: Number(timeout),
  });
  const [response] = await operation.promise();

  console.log('Create feature response');
  console.log(`Name : ${response.name}`);
  console.log('Raw response:');
  console.log(JSON.stringify(response, null, 2));
}
createFeature();

Recursos de criação em lote

Crie recursos de um tipo existente em lote. Para solicitações de criação em lote, o Vertex AI Feature Store cria vários recursos de uma só vez, o que é mais rápido para criar um grande número de recursos em comparação com o método featurestores.entityTypes.features.create.

IU da Web

Consulte Como criar um recurso.

REST

Para criar um ou mais recursos para um tipo de entidade atual, envie uma solicitação POST usando o método featurestores.entityTypes.features.batchCreate, como mostrado no exemplo a seguir para criar um anexo da VLAN de monitoramento.

Antes de usar os dados da solicitação abaixo, faça as substituições a seguir:

  • LOCATION_ID: região em que featurestore está localizada, como us-central1.
  • PROJECT_ID: o ID do projeto.
  • FEATURESTORE_ID: ID do featurestore.
  • ENTITY_TYPE_ID: ID do tipo de entidade.
  • PARENT: o nome do recurso do tipo de entidade em que os recursos serão criados. Formato obrigatório:
    projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID
  • FEATURE_ID: um ID do recurso.
  • DESCRIPTION: descrição do recurso.
  • VALUE_TYPE: o tipo de valor do recurso.
  • DURATION: (opcional) o intervalo entre os snapshots em segundos. O valor precisa terminar com um `s`.

Método HTTP e URL:

POST https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID/features:batchCreate

Corpo JSON da solicitação:

{
  "requests": [
    {
      "parent" : "PARENT_1",
      "feature": {
        "description": "DESCRIPTION_1",
        "valueType": "VALUE_TYPE_1",
        "monitoringConfig": {
          "snapshotAnalysis": {
            "monitoringInterval": "DURATION"
          }
        }
      },
      "featureId": "FEATURE_ID_1"
    },
    {
      "parent" : "PARENT_2",
      "feature": {
        "description": "DESCRIPTION_2",
        "valueType": "VALUE_TYPE_2",
        "monitoringConfig": {
          "snapshotAnalysis": {
            "monitoringInterval": "DURATION"
          }
        }
      },
      "featureId": "FEATURE_ID_2"
    }
  ]
}

Para enviar a solicitação, escolha uma destas opções:

curl

Salve o corpo da solicitação em um arquivo com o nome request.json e execute o comando a seguir:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID/features:batchCreate"

PowerShell

Salve o corpo da solicitação em um arquivo com o nome request.json e execute o comando a seguir:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID/features:batchCreate" | Select-Object -Expand Content

Será exibido um código semelhante a este. Use OPERATION_ID na resposta para ver o status da operação.

{
  "name": "projects/PROJECT_NUMBER/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/operations/OPERATION_ID",
  "metadata": {
    "@type": "type.googleapis.com/google.cloud.aiplatform.v1.BatchCreateFeaturesOperationMetadata",
    "genericMetadata": {
      "createTime": "2021-03-02T00:04:13.039166Z",
      "updateTime": "2021-03-02T00:04:13.039166Z"
    }
  }
}

Python

Para saber como instalar o SDK da Vertex AI para Python, consulte Instalar o SDK da Vertex AI para Python. Para mais informações, consulte a documentação de referência da API Python.

from google.cloud import aiplatform


def batch_create_features_sample(
    project: str,
    location: str,
    entity_type_id: str,
    featurestore_id: str,
    sync: bool = True,
):

    aiplatform.init(project=project, location=location)

    my_entity_type = aiplatform.featurestore.EntityType(
        entity_type_name=entity_type_id, featurestore_id=featurestore_id
    )

    FEATURE_CONFIGS = {
        "age": {"value_type": "INT64", "description": "User age"},
        "gender": {"value_type": "STRING", "description": "User gender"},
        "liked_genres": {
            "value_type": "STRING_ARRAY",
            "description": "An array of genres this user liked",
        },
    }

    my_entity_type.batch_create_features(feature_configs=FEATURE_CONFIGS, sync=sync)

Java

Antes de testar esse exemplo, siga as instruções de configuração para Java no Guia de início rápido da Vertex AI sobre como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vertex AI para Java.

Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.


import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.aiplatform.v1.BatchCreateFeaturesOperationMetadata;
import com.google.cloud.aiplatform.v1.BatchCreateFeaturesRequest;
import com.google.cloud.aiplatform.v1.BatchCreateFeaturesResponse;
import com.google.cloud.aiplatform.v1.CreateFeatureRequest;
import com.google.cloud.aiplatform.v1.EntityTypeName;
import com.google.cloud.aiplatform.v1.Feature;
import com.google.cloud.aiplatform.v1.Feature.ValueType;
import com.google.cloud.aiplatform.v1.FeaturestoreServiceClient;
import com.google.cloud.aiplatform.v1.FeaturestoreServiceSettings;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;

public class BatchCreateFeaturesSample {

  public static void main(String[] args)
      throws IOException, InterruptedException, ExecutionException, TimeoutException {
    // TODO(developer): Replace these variables before running the sample.
    String project = "YOUR_PROJECT_ID";
    String featurestoreId = "YOUR_FEATURESTORE_ID";
    String entityTypeId = "YOUR_ENTITY_TYPE_ID";
    String location = "us-central1";
    String endpoint = "us-central1-aiplatform.googleapis.com:443";
    int timeout = 300;
    batchCreateFeaturesSample(project, featurestoreId, entityTypeId, location, endpoint, timeout);
  }

  static void batchCreateFeaturesSample(
      String project,
      String featurestoreId,
      String entityTypeId,
      String location,
      String endpoint,
      int timeout)
      throws IOException, InterruptedException, ExecutionException, TimeoutException {
    FeaturestoreServiceSettings featurestoreServiceSettings =
        FeaturestoreServiceSettings.newBuilder().setEndpoint(endpoint).build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (FeaturestoreServiceClient featurestoreServiceClient =
        FeaturestoreServiceClient.create(featurestoreServiceSettings)) {

      List<CreateFeatureRequest> createFeatureRequests = new ArrayList<>();

      Feature titleFeature =
          Feature.newBuilder()
              .setDescription("The title of the movie")
              .setValueType(ValueType.STRING)
              .build();
      Feature genresFeature =
          Feature.newBuilder()
              .setDescription("The genres of the movie")
              .setValueType(ValueType.STRING)
              .build();
      Feature averageRatingFeature =
          Feature.newBuilder()
              .setDescription("The average rating for the movie, range is [1.0-5.0]")
              .setValueType(ValueType.DOUBLE)
              .build();

      createFeatureRequests.add(
          CreateFeatureRequest.newBuilder().setFeature(titleFeature).setFeatureId("title").build());

      createFeatureRequests.add(
          CreateFeatureRequest.newBuilder()
              .setFeature(genresFeature)
              .setFeatureId("genres")
              .build());

      createFeatureRequests.add(
          CreateFeatureRequest.newBuilder()
              .setFeature(averageRatingFeature)
              .setFeatureId("average_rating")
              .build());

      BatchCreateFeaturesRequest batchCreateFeaturesRequest =
          BatchCreateFeaturesRequest.newBuilder()
              .setParent(
                  EntityTypeName.of(project, location, featurestoreId, entityTypeId).toString())
              .addAllRequests(createFeatureRequests)
              .build();

      OperationFuture<BatchCreateFeaturesResponse, BatchCreateFeaturesOperationMetadata>
          batchCreateFeaturesFuture =
              featurestoreServiceClient.batchCreateFeaturesAsync(batchCreateFeaturesRequest);
      System.out.format(
          "Operation name: %s%n", batchCreateFeaturesFuture.getInitialFuture().get().getName());
      System.out.println("Waiting for operation to finish...");
      BatchCreateFeaturesResponse batchCreateFeaturesResponse =
          batchCreateFeaturesFuture.get(timeout, TimeUnit.SECONDS);
      System.out.println("Batch Create Features Response");
      System.out.println(batchCreateFeaturesResponse);
      featurestoreServiceClient.close();
    }
  }
}

Node.js

Antes de testar esse exemplo, siga as instruções de configuração para Node.js no Guia de início rápido da Vertex AI sobre como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vertex AI para Node.js.

Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

/**
 * TODO(developer): Uncomment these variables before running the sample.\
 * (Not necessary if passing values as arguments)
 */

// const project = 'YOUR_PROJECT_ID';
// const featurestoreId = 'YOUR_FEATURESTORE_ID';
// const entityTypeId = 'YOUR_ENTITY_TYPE_ID';
// const location = 'YOUR_PROJECT_LOCATION';
// const apiEndpoint = 'YOUR_API_ENDPOINT';
// const timeout = <TIMEOUT_IN_MILLI_SECONDS>;

// Imports the Google Cloud Featurestore Service Client library
const {FeaturestoreServiceClient} = require('@google-cloud/aiplatform').v1;

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: apiEndpoint,
};

// Instantiates a client
const featurestoreServiceClient = new FeaturestoreServiceClient(
  clientOptions
);

async function batchCreateFeatures() {
  // Configure the parent resource
  const parent = `projects/${project}/locations/${location}/featurestores/${featurestoreId}/entityTypes/${entityTypeId}`;

  const ageFeature = {
    valueType: 'INT64',
    description: 'User age',
  };

  const ageFeatureRequest = {
    feature: ageFeature,
    featureId: 'age',
  };

  const genderFeature = {
    valueType: 'STRING',
    description: 'User gender',
  };

  const genderFeatureRequest = {
    feature: genderFeature,
    featureId: 'gender',
  };

  const likedGenresFeature = {
    valueType: 'STRING_ARRAY',
    description: 'An array of genres that this user liked',
  };

  const likedGenresFeatureRequest = {
    feature: likedGenresFeature,
    featureId: 'liked_genres',
  };

  const requests = [
    ageFeatureRequest,
    genderFeatureRequest,
    likedGenresFeatureRequest,
  ];

  const request = {
    parent: parent,
    requests: requests,
  };

  // Batch Create Features request
  const [operation] = await featurestoreServiceClient.batchCreateFeatures(
    request,
    {timeout: Number(timeout)}
  );
  const [response] = await operation.promise();

  console.log('Batch create features response');
  console.log('Raw response:');
  console.log(JSON.stringify(response, null, 2));
}
batchCreateFeatures();

Listar recursos

Lista todos os recursos em um determinado local. Para pesquisar atributos em todos os tipos de entidade e featurestores em um determinado local, consulte o método Como pesquisar recursos.

IU da Web

  1. Na seção "Vertex AI" do Console do Google Cloud, acesse a página Recursos.

    Acessar a página Recursos

  2. Selecione uma região na lista suspensa Região.
  3. Na tabela de recursos, visualize a coluna Recursos para ver os recursos no projeto para a região selecionada.

REST

Para listar todos os recursos de um único tipo de entidade, envie uma solicitação GET usando o método featurestores.entityTypes.features.list.

Antes de usar os dados da solicitação abaixo, faça as substituições a seguir:

  • LOCATION_ID: região em que featurestore está localizada, como us-central1.
  • PROJECT_ID: o ID do projeto.
  • FEATURESTORE_ID: ID do featurestore.
  • ENTITY_TYPE_ID: ID do tipo de entidade.

Método HTTP e URL:

GET https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID/features

Para enviar a solicitação, escolha uma destas opções:

curl

execute o seguinte comando:

curl -X GET \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
"https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID/features"

PowerShell

execute o seguinte comando:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method GET `
-Headers $headers `
-Uri "https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID/features" | Select-Object -Expand Content

Você receberá uma resposta JSON semelhante a esta:

{
  "features": [
    {
      "name": "projects/PROJECT_NUMBER/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID/features/FEATURE_ID_1",
      "description": "DESCRIPTION",
      "valueType": "VALUE_TYPE",
      "createTime": "2021-03-01T22:41:20.626644Z",
      "updateTime": "2021-03-01T22:41:20.626644Z",
      "labels": {
        "environment": "testing"
      },
      "etag": "AMEw9yP0qJeLao6P3fl9cKEGY4ie5-SanQaiN7c_Ca4QOa0u7AxwO6i75Vbp0Cr51MSf"
    },
    {
      "name": "projects/PROJECT_NUMBER/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID/features/FEATURE_ID_2",
      "description": "DESCRIPTION",
      "valueType": "VALUE_TYPE",
      "createTime": "2021-02-25T01:27:00.544230Z",
      "updateTime": "2021-02-25T01:27:00.544230Z",
      "labels": {
        "environment": "testing"
      },
      "etag": "AMEw9yMdrLZ7Waty0ane-DkHq4kcsIVC-piqJq7n6A_Y-BjNzPY4rNlokDHNyUqC7edw"
    },
    {
      "name": "projects/PROJECT_NUMBER/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID/features/FEATURE_ID_3",
      "description": "DESCRIPTION",
      "valueType": "VALUE_TYPE",
      "createTime": "2021-03-01T22:41:20.628493Z",
      "updateTime": "2021-03-01T22:41:20.628493Z",
      "labels": {
        "environment": "testing"
      },
      "etag": "AMEw9yM-sAkv-u-jzkUOToaAVovK7GKbrubd9DbmAonik-ojTWG8-hfSRYt6jHKRTQ35"
    }
  ]
}

Java

Antes de testar esse exemplo, siga as instruções de configuração para Java no Guia de início rápido da Vertex AI sobre como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vertex AI para Java.

Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.


import com.google.cloud.aiplatform.v1.EntityTypeName;
import com.google.cloud.aiplatform.v1.Feature;
import com.google.cloud.aiplatform.v1.FeaturestoreServiceClient;
import com.google.cloud.aiplatform.v1.FeaturestoreServiceSettings;
import com.google.cloud.aiplatform.v1.ListFeaturesRequest;
import java.io.IOException;

public class ListFeaturesSample {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String project = "YOUR_PROJECT_ID";
    String featurestoreId = "YOUR_FEATURESTORE_ID";
    String entityTypeId = "YOUR_ENTITY_TYPE_ID";
    String location = "us-central1";
    String endpoint = "us-central1-aiplatform.googleapis.com:443";

    listFeaturesSample(project, featurestoreId, entityTypeId, location, endpoint);
  }

  static void listFeaturesSample(
      String project, String featurestoreId, String entityTypeId, String location, String endpoint)
      throws IOException {
    FeaturestoreServiceSettings featurestoreServiceSettings =
        FeaturestoreServiceSettings.newBuilder().setEndpoint(endpoint).build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (FeaturestoreServiceClient featurestoreServiceClient =
        FeaturestoreServiceClient.create(featurestoreServiceSettings)) {

      ListFeaturesRequest listFeaturesRequest =
          ListFeaturesRequest.newBuilder()
              .setParent(
                  EntityTypeName.of(project, location, featurestoreId, entityTypeId).toString())
              .build();
      System.out.println("List Features Response");
      for (Feature element :
          featurestoreServiceClient.listFeatures(listFeaturesRequest).iterateAll()) {
        System.out.println(element);
      }
      featurestoreServiceClient.close();
    }
  }
}

Node.js

Antes de testar esse exemplo, siga as instruções de configuração para Node.js no Guia de início rápido da Vertex AI sobre como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vertex AI para Node.js.

Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

/**
 * TODO(developer): Uncomment these variables before running the sample.\
 * (Not necessary if passing values as arguments)
 */

// const project = 'YOUR_PROJECT_ID';
// const featurestoreId = 'YOUR_FEATURESTORE_ID';
// const entityTypeId = 'YOUR_ENTITY_TYPE_ID';
// const location = 'YOUR_PROJECT_LOCATION';
// const apiEndpoint = 'YOUR_API_ENDPOINT';
// const timeout = <TIMEOUT_IN_MILLI_SECONDS>;

// Imports the Google Cloud Featurestore Service Client library
const {FeaturestoreServiceClient} = require('@google-cloud/aiplatform').v1;

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: apiEndpoint,
};

// Instantiates a client
const featurestoreServiceClient = new FeaturestoreServiceClient(
  clientOptions
);

async function listFeatures() {
  // Configure the parent resource
  const parent = `projects/${project}/locations/${location}/featurestores/${featurestoreId}/entityTypes/${entityTypeId}`;

  const request = {
    parent: parent,
  };

  // List Features request
  const [response] = await featurestoreServiceClient.listFeatures(request, {
    timeout: Number(timeout),
  });

  console.log('List features response');
  console.log('Raw response:');
  console.log(JSON.stringify(response, null, 2));
}
listFeatures();

Outras linguagens

Confira a instalação e o uso do SDK da Vertex AI para Python em Usar o SDK da Vertex AI para Python. Saiba mais na documentação de referência da API SDK da Vertex AI para Python.

Pesquisa por recursos

Pesquise recursos com base em uma ou mais propriedades, como ID do recurso, ID do tipo de entidade ou descrição do recurso. O Vertex AI Feature Store pesquisa em todos os featurestores e tipos de entidades em um determinado local. Também é possível filtrar os resultados filtrando em featurestores específicos, tipos de valor e rótulos.

Para listar todos os recursos, consulte Listar recursos.

IU da Web

  1. Na seção "Vertex AI" do Console do Google Cloud, acesse a página Recursos.

    Acessar a página Recursos

  2. Selecione uma região na lista suspensa Região.
  3. Clique no campo Filtro da tabela de recursos.
  4. Selecione uma propriedade para filtrar, como Recurso, que retorna recursos que contêm uma string correspondente em qualquer lugar do ID.
  5. Digite um valor para o filtro e pressione enter. O Vertex AI Feature Store retorna resultados na tabela de recursos.
  6. Para adicionar mais filtros, clique no campo Filtro novamente.

REST

Para pesquisar recursos, envie uma solicitação GET usando o método featurestores.searchFeatures. O exemplo a seguir usa vários parâmetros de pesquisa, gravados como featureId:test AND valueType=STRING. A consulta retorna recursos que contêm test no ID e com valores do tipo STRING.

Antes de usar os dados da solicitação abaixo, faça as substituições a seguir:

  • LOCATION_ID: região em que featurestore está localizada, como us-central1.
  • PROJECT_ID: o ID do projeto.

Método HTTP e URL:

GET https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores:searchFeatures?query="featureId:test%20AND%20valueType=STRING"

Para enviar a solicitação, escolha uma destas opções:

curl

execute o seguinte comando:

curl -X GET \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
"https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores:searchFeatures?query="featureId:test%20AND%20valueType=STRING""

PowerShell

execute o seguinte comando:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method GET `
-Headers $headers `
-Uri "https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores:searchFeatures?query="featureId:test%20AND%20valueType=STRING"" | Select-Object -Expand Content

Você receberá uma resposta JSON semelhante a esta:

{
  "features": [
    {
      "name": "projects/PROJECT_NUMBER/locations/LOCATION_IDfeature-delete.html/featurestores/featurestore_demo/entityTypes/testing/features/test1",
      "description": "featurestore test1",
      "createTime": "2021-02-26T18:16:09.528185Z",
      "updateTime": "2021-02-26T18:16:09.528185Z",
      "labels": {
        "environment": "testing"
      }
    }
  ]
}

Java

Antes de testar esse exemplo, siga as instruções de configuração para Java no Guia de início rápido da Vertex AI sobre como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vertex AI para Java.

Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.


import com.google.cloud.aiplatform.v1.Feature;
import com.google.cloud.aiplatform.v1.FeaturestoreServiceClient;
import com.google.cloud.aiplatform.v1.FeaturestoreServiceSettings;
import com.google.cloud.aiplatform.v1.LocationName;
import com.google.cloud.aiplatform.v1.SearchFeaturesRequest;
import java.io.IOException;

public class SearchFeaturesSample {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String project = "YOUR_PROJECT_ID";
    String query = "YOUR_QUERY";
    String location = "us-central1";
    String endpoint = "us-central1-aiplatform.googleapis.com:443";
    searchFeaturesSample(project, query, location, endpoint);
  }

  static void searchFeaturesSample(String project, String query, String location, String endpoint)
      throws IOException {
    FeaturestoreServiceSettings featurestoreServiceSettings =
        FeaturestoreServiceSettings.newBuilder().setEndpoint(endpoint).build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (FeaturestoreServiceClient featurestoreServiceClient =
        FeaturestoreServiceClient.create(featurestoreServiceSettings)) {

      SearchFeaturesRequest searchFeaturesRequest =
          SearchFeaturesRequest.newBuilder()
              .setLocation(LocationName.of(project, location).toString())
              .setQuery(query)
              .build();
      System.out.println("Search Features Response");
      for (Feature element :
          featurestoreServiceClient.searchFeatures(searchFeaturesRequest).iterateAll()) {
        System.out.println(element);
      }
      featurestoreServiceClient.close();
    }
  }
}

Node.js

Antes de testar esse exemplo, siga as instruções de configuração para Node.js no Guia de início rápido da Vertex AI sobre como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vertex AI para Node.js.

Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

/**
 * TODO(developer): Uncomment these variables before running the sample.\
 * (Not necessary if passing values as arguments)
 */

// const project = 'YOUR_PROJECT_ID';
// const location = 'YOUR_PROJECT_LOCATION';
// const apiEndpoint = 'YOUR_API_ENDPOINT';
// const timeout = <TIMEOUT_IN_MILLI_SECONDS>;

// Imports the Google Cloud Featurestore Service Client library
const {FeaturestoreServiceClient} = require('@google-cloud/aiplatform').v1;

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: apiEndpoint,
};

// Instantiates a client
const featurestoreServiceClient = new FeaturestoreServiceClient(
  clientOptions
);

async function searchFeatures() {
  // Configure the locationResource resource
  const locationResource = `projects/${project}/locations/${location}`;

  const request = {
    location: locationResource,
    query: query,
  };

  // Search Features request
  const [response] = await featurestoreServiceClient.searchFeatures(request, {
    timeout: Number(timeout),
  });

  console.log('Search features response');
  console.log('Raw response:');
  console.log(JSON.stringify(response, null, 2));
}
searchFeatures();

Outras linguagens

Confira a instalação e o uso do SDK da Vertex AI para Python em Usar o SDK da Vertex AI para Python. Saiba mais na documentação de referência da API SDK da Vertex AI para Python.

Ver detalhes do atributo

Veja detalhes de um recurso, como o tipo de valor ou a descrição. Se você usar o Console do Google Cloud e tiver o monitoramento de recursos ativado, também poderá ver a distribuição de valores de recurso ao longo do tempo.

IU da Web

  1. Na seção "Vertex AI" do Console do Google Cloud, acesse a página Recursos.

    Acessar a página Recursos

  2. Selecione uma região na lista suspensa Região.
  3. Na tabela de recursos, visualize a coluna Recursos para encontrar o recurso com os detalhes que você quer ver.
  4. Clique no nome de um elemento para ver os detalhes.
  5. Para visualizar as métricas, clique em Métricas. A Vertex AI Feature Store fornece métricas de distribuição de recursos para o recurso.

REST

Para mais detalhes sobre um recurso, envie uma solicitação GET usando o método featurestores.entityTypes.features.get.

Antes de usar os dados da solicitação abaixo, faça as substituições a seguir:

  • LOCATION_ID: região em que featurestore está localizada, como us-central1.
  • PROJECT_ID: o ID do projeto.
  • FEATURESTORE_ID: ID do featurestore.
  • ENTITY_TYPE_ID: ID do tipo de entidade.
  • FEATURE_ID: ID do recurso.

Método HTTP e URL:

GET https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID/features/FEATURE_ID

Para enviar a solicitação, escolha uma destas opções:

curl

execute o seguinte comando:

curl -X GET \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
"https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID/features/FEATURE_ID"

PowerShell

execute o seguinte comando:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method GET `
-Headers $headers `
-Uri "https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID/features/FEATURE_ID" | Select-Object -Expand Content

Você receberá uma resposta JSON semelhante a esta:

{
  "name": "projects/PROJECT_NUMBER/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID/features/FEATURE_ID",
  "description": "DESCRIPTION",
  "valueType": "VALUE_TYPE",
  "createTime": "2021-03-01T22:41:20.628493Z",
  "updateTime": "2021-03-01T22:41:20.628493Z",
  "labels": {
    "environment": "testing"
  },
  "etag": "AMEw9yOZbdYKHTyjV22ziZR1vUX3nWOi0o2XU3-OADahSdfZ8Apklk_qPruhF-o1dOSD",
  "monitoringConfig": {}
}

Java

Antes de testar esse exemplo, siga as instruções de configuração para Java no Guia de início rápido da Vertex AI sobre como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vertex AI para Java.

Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.


import com.google.cloud.aiplatform.v1.Feature;
import com.google.cloud.aiplatform.v1.FeatureName;
import com.google.cloud.aiplatform.v1.FeaturestoreServiceClient;
import com.google.cloud.aiplatform.v1.FeaturestoreServiceSettings;
import com.google.cloud.aiplatform.v1.GetFeatureRequest;
import java.io.IOException;

public class GetFeatureSample {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String project = "YOUR_PROJECT_ID";
    String featurestoreId = "YOUR_FEATURESTORE_ID";
    String entityTypeId = "YOUR_ENTITY_TYPE_ID";
    String featureId = "YOUR_FEATURE_ID";
    String location = "us-central1";
    String endpoint = "us-central1-aiplatform.googleapis.com:443";

    getFeatureSample(project, featurestoreId, entityTypeId, featureId, location, endpoint);
  }

  static void getFeatureSample(
      String project,
      String featurestoreId,
      String entityTypeId,
      String featureId,
      String location,
      String endpoint)
      throws IOException {

    FeaturestoreServiceSettings featurestoreServiceSettings =
        FeaturestoreServiceSettings.newBuilder().setEndpoint(endpoint).build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (FeaturestoreServiceClient featurestoreServiceClient =
        FeaturestoreServiceClient.create(featurestoreServiceSettings)) {

      GetFeatureRequest getFeatureRequest =
          GetFeatureRequest.newBuilder()
              .setName(
                  FeatureName.of(project, location, featurestoreId, entityTypeId, featureId)
                      .toString())
              .build();

      Feature feature = featurestoreServiceClient.getFeature(getFeatureRequest);
      System.out.println("Get Feature Response");
      System.out.println(feature);
      featurestoreServiceClient.close();
    }
  }
}

Node.js

Antes de testar esse exemplo, siga as instruções de configuração para Node.js no Guia de início rápido da Vertex AI sobre como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vertex AI para Node.js.

Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

/**
 * TODO(developer): Uncomment these variables before running the sample.\
 * (Not necessary if passing values as arguments)
 */

// const project = 'YOUR_PROJECT_ID';
// const featurestoreId = 'YOUR_FEATURESTORE_ID';
// const entityTypeId = 'YOUR_ENTITY_TYPE_ID';
// const featureId = 'YOUR_FEATURE_ID';
// const location = 'YOUR_PROJECT_LOCATION';
// const apiEndpoint = 'YOUR_API_ENDPOINT';
// const timeout = <TIMEOUT_IN_MILLI_SECONDS>;

// Imports the Google Cloud Featurestore Service Client library
const {FeaturestoreServiceClient} = require('@google-cloud/aiplatform').v1;

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: apiEndpoint,
};

// Instantiates a client
const featurestoreServiceClient = new FeaturestoreServiceClient(
  clientOptions
);

async function getFeature() {
  // Configure the name resource
  const name = `projects/${project}/locations/${location}/featurestores/${featurestoreId}/entityTypes/${entityTypeId}/features/${featureId}`;

  const request = {
    name: name,
  };

  // Get Feature request
  const [response] = await featurestoreServiceClient.getFeature(request, {
    timeout: Number(timeout),
  });

  console.log('Get feature response');
  console.log(`Name : ${response.name}`);
  console.log('Raw response:');
  console.log(JSON.stringify(response, null, 2));
}
getFeature();

Outras linguagens

Confira a instalação e o uso do SDK da Vertex AI para Python em Usar o SDK da Vertex AI para Python. Saiba mais na documentação de referência da API SDK da Vertex AI para Python.

Excluir um recurso

Excluir um recurso e todos os seus valores.

IU da Web

  1. Na seção "Vertex AI" do Console do Google Cloud, acesse a página Recursos.

    Acessar a página Recursos

  2. Selecione uma região na lista suspensa Região.
  3. Na tabela de recursos, veja a coluna Recurso e encontre o recurso a ser excluído.
  4. Clique no nome do elemento.
  5. Na barra de ações, clique em Excluir.
  6. Clique em Confirmar para excluir o elemento e os valores relacionados.

REST

Para excluir um recurso, envie uma solicitação DELETE usando o método featurestores.entityTypes.features.delete.

Antes de usar os dados da solicitação abaixo, faça as substituições a seguir:

  • LOCATION_ID: região em que featurestore está localizada, como us-central1.
  • PROJECT_ID: o ID do projeto.
  • FEATURESTORE_ID: ID do featurestore.
  • ENTITY_TYPE_ID: ID do tipo de entidade.
  • FEATURE_ID: ID do recurso.

Método HTTP e URL:

DELETE https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID/features/FEATURE_ID

Para enviar a solicitação, escolha uma destas opções:

curl

execute o seguinte comando:

curl -X DELETE \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
"https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID/features/FEATURE_ID"

PowerShell

execute o seguinte comando:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method DELETE `
-Headers $headers `
-Uri "https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID/features/FEATURE_ID" | Select-Object -Expand Content

Você receberá uma resposta JSON semelhante a esta:

{
  "name": "projects/PROJECT_NUMBER/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/operations/OPERATION_ID",
  "metadata": {
    "@type": "type.googleapis.com/google.cloud.aiplatform.v1.DeleteOperationMetadata",
    "genericMetadata": {
      "createTime": "2021-02-26T17:32:56.008325Z",
      "updateTime": "2021-02-26T17:32:56.008325Z"
    }
  },
  "done": true,
  "response": {
    "@type": "type.googleapis.com/google.protobuf.Empty"
  }
}

Java

Antes de testar esse exemplo, siga as instruções de configuração para Java no Guia de início rápido da Vertex AI sobre como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vertex AI para Java.

Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.


import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.aiplatform.v1.DeleteFeatureRequest;
import com.google.cloud.aiplatform.v1.DeleteOperationMetadata;
import com.google.cloud.aiplatform.v1.FeatureName;
import com.google.cloud.aiplatform.v1.FeaturestoreServiceClient;
import com.google.cloud.aiplatform.v1.FeaturestoreServiceSettings;
import com.google.protobuf.Empty;
import java.io.IOException;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;

public class DeleteFeatureSample {

  public static void main(String[] args)
      throws IOException, InterruptedException, ExecutionException, TimeoutException {
    // TODO(developer): Replace these variables before running the sample.
    String project = "YOUR_PROJECT_ID";
    String featurestoreId = "YOUR_FEATURESTORE_ID";
    String entityTypeId = "YOUR_ENTITY_TYPE_ID";
    String featureId = "YOUR_FEATURE_ID";
    String location = "us-central1";
    String endpoint = "us-central1-aiplatform.googleapis.com:443";
    int timeout = 300;

    deleteFeatureSample(
        project, featurestoreId, entityTypeId, featureId, location, endpoint, timeout);
  }

  static void deleteFeatureSample(
      String project,
      String featurestoreId,
      String entityTypeId,
      String featureId,
      String location,
      String endpoint,
      int timeout)
      throws IOException, InterruptedException, ExecutionException, TimeoutException {
    FeaturestoreServiceSettings featurestoreServiceSettings =
        FeaturestoreServiceSettings.newBuilder().setEndpoint(endpoint).build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (FeaturestoreServiceClient featurestoreServiceClient =
        FeaturestoreServiceClient.create(featurestoreServiceSettings)) {

      DeleteFeatureRequest deleteFeatureRequest =
          DeleteFeatureRequest.newBuilder()
              .setName(
                  FeatureName.of(project, location, featurestoreId, entityTypeId, featureId)
                      .toString())
              .build();

      OperationFuture<Empty, DeleteOperationMetadata> operationFuture =
          featurestoreServiceClient.deleteFeatureAsync(deleteFeatureRequest);
      System.out.format("Operation name: %s%n", operationFuture.getInitialFuture().get().getName());
      System.out.println("Waiting for operation to finish...");
      operationFuture.get(timeout, TimeUnit.SECONDS);
      System.out.format("Deleted Feature.");
      featurestoreServiceClient.close();
    }
  }
}

Node.js

Antes de testar esse exemplo, siga as instruções de configuração para Node.js no Guia de início rápido da Vertex AI sobre como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vertex AI para Node.js.

Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

/**
 * TODO(developer): Uncomment these variables before running the sample.\
 * (Not necessary if passing values as arguments)
 */

// const project = 'YOUR_PROJECT_ID';
// const featurestoreId = 'YOUR_FEATURESTORE_ID';
// const entityTypeId = 'YOUR_ENTITY_TYPE_ID';
// const featureId = 'YOUR_FEATURE_ID';
// const location = 'YOUR_PROJECT_LOCATION';
// const apiEndpoint = 'YOUR_API_ENDPOINT';
// const timeout = <TIMEOUT_IN_MILLI_SECONDS>;

// Imports the Google Cloud Featurestore Service Client library
const {FeaturestoreServiceClient} = require('@google-cloud/aiplatform').v1;

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: apiEndpoint,
};

// Instantiates a client
const featurestoreServiceClient = new FeaturestoreServiceClient(
  clientOptions
);

async function deleteFeature() {
  // Configure the name resource
  const name = `projects/${project}/locations/${location}/featurestores/${featurestoreId}/entityTypes/${entityTypeId}/features/${featureId}`;

  const request = {
    name: name,
  };

  // Delete Feature request
  const [operation] = await featurestoreServiceClient.deleteFeature(request, {
    timeout: Number(timeout),
  });
  const [response] = await operation.promise();

  console.log('Delete feature response');
  console.log('Raw response:');
  console.log(JSON.stringify(response, null, 2));
}
deleteFeature();

Outras linguagens

Confira a instalação e o uso do SDK da Vertex AI para Python em Usar o SDK da Vertex AI para Python. Saiba mais na documentação de referência da API SDK da Vertex AI para Python.

A seguir