Aprende a administrar y encontrar atributos.
Crea un atributo
Crea un atributo único para un tipo de entidad existente. Para crear varios atributos en una sola solicitud, consulta Crea atributos por lotes.
IU web
- En la sección de Vertex AI de la consola de Google Cloud, ve a la página Funciones.
- Selecciona una región de la lista desplegable Región.
- En la tabla de atributos, consulta la columna Tipo de entidad y haz clic en el tipo de entidad al que agregarás atributos.
- Haz clic en Agregar funciones para abrir el panel Agregar funciones.
- Especifica un nombre, un tipo de valor y (opcionalmente) una descripción para la función.
- Para habilitar la supervisión del valor de las funciones (Vista previa), en Supervisión de funciones, selecciona Anular la configuración de supervisión del tipo de entidad y, luego, ingresa lo siguiente: la cantidad de días entre instantáneas. Esta configuración anula las configuraciones de supervisión existentes o futuras en el tipo de entidad de la función. Para obtener más información, consulta Supervisión del valor de los atributos.
- Para agregar más atributos, haz clic en Agregar otro atributo.
- Haz clic en Guardar.
REST
Si deseas crear un atributo para un tipo de entidad existente, envía una solicitud POST mediante el método featurestores.entityTypes.features.create.
Antes de usar cualquiera de los datos de solicitud a continuación, realiza los siguientes reemplazos:
- LOCATION_ID: Región donde se encuentra el featurestore, como
us-central1
. - PROJECT_ID: El ID del proyecto.
- FEATURESTORE_ID: ID del featurestore.
- ENTITY_TYPE_ID: ID del tipo de entidad.
- FEATURE_ID: Es un ID para el atributo.
- DESCRIPTION: Es la descripción del atributo.
- VALUE_TYPE: El tipo de valor de la función.
Método HTTP y URL:
POST https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID?featureId=FEATURE_ID
Cuerpo JSON de la solicitud:
{ "description": "DESCRIPTION", "valueType": "VALUE_TYPE" }
Para enviar tu solicitud, elige una de estas opciones:
curl
Guarda el cuerpo de la solicitud en un archivo llamado request.json
y ejecuta el siguiente comando:
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID?featureId=FEATURE_ID"
PowerShell
Guarda el cuerpo de la solicitud en un archivo llamado request.json
y ejecuta el siguiente comando:
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID?featureId=FEATURE_ID" | Select-Object -Expand Content
Deberías ver un resultado similar al siguiente. Puedes usar el OPERATION_ID en la respuesta para obtener el estado de la operación.
{ "name": "projects/PROJECT_NUMBER/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/operations/OPERATION_ID", "metadata": { "@type": "type.googleapis.com/google.cloud.aiplatform.v1.CreateFeatureOperationMetadata", "genericMetadata": { "createTime": "2021-03-02T00:04:13.039166Z", "updateTime": "2021-03-02T00:04:13.039166Z" } } }
Python
Si deseas obtener información para instalar o actualizar el SDK de Vertex AI para Python, consulta Instala el SDK de Vertex AI para Python. Si deseas obtener más información, consulta la documentación de referencia de la API de Python.
Python
La biblioteca cliente de Vertex AI se incluye cuando instalas el SDK de Vertex AI para Python. Si deseas obtener información sobre cómo instalar el SDK de Vertex AI para Python, consulta Instala el SDK de Vertex AI para Python. Si deseas obtener más información, consulta la documentación de referencia del SDK de AI de Vertex para la API de Python.
Java
Antes de probar este ejemplo, sigue las instrucciones de configuración para Java incluidas en la guía de inicio rápido de Vertex AI sobre cómo usar bibliotecas cliente. Para obtener más información, consulta la documentación de referencia de la API de Vertex AI Java.
Para autenticarte en Vertex AI, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.
Node.js
Antes de probar este ejemplo, sigue las instrucciones de configuración para Node.js incluidas en la guía de inicio rápido de Vertex AI sobre cómo usar bibliotecas cliente. Para obtener más información, consulta la documentación de referencia de la API de Vertex AI Node.js.
Para autenticarte en Vertex AI, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.
Crea funciones por lotes
Crea atributos de forma masiva para un tipo existente. Para las solicitudes de creación por lotes, Vertex AI Feature Store (Legacy) crea varios atributos a la vez, lo cual es más rápido para crear una gran cantidad de atributos en comparación con el método featurestores.entityTypes.features.create
.
IU web
Consulta cómo crear una función.
REST
A fin de crear una o más características para un tipo de entidad existente, envía una solicitud POST con el método featurestores.entityTypes.features.batchCreate, como se muestra en el siguiente ejemplo.
Antes de usar cualquiera de los datos de solicitud a continuación, realiza los siguientes reemplazos:
- LOCATION_ID: Región donde se encuentra el featurestore, como
us-central1
. - PROJECT_ID: El ID del proyecto.
- FEATURESTORE_ID: ID del featurestore.
- ENTITY_TYPE_ID: ID del tipo de entidad.
- PARENT: Es el nombre del recurso del tipo de entidad en el que se crearán los atributos.
Formato obligatorio:
projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID
- FEATURE_ID: Es un ID para el atributo.
- DESCRIPTION: Es la descripción del atributo.
- VALUE_TYPE: El tipo de valor de la función.
- DURATION: (Opcional) La duración del intervalo entre instantáneas en segundos. El valor debe terminar con una “s”.
Método HTTP y URL:
POST https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID/features:batchCreate
Cuerpo JSON de la solicitud:
{ "requests": [ { "parent" : "PARENT_1", "feature": { "description": "DESCRIPTION_1", "valueType": "VALUE_TYPE_1", "monitoringConfig": { "snapshotAnalysis": { "monitoringInterval": "DURATION" } } }, "featureId": "FEATURE_ID_1" }, { "parent" : "PARENT_2", "feature": { "description": "DESCRIPTION_2", "valueType": "VALUE_TYPE_2", "monitoringConfig": { "snapshotAnalysis": { "monitoringInterval": "DURATION" } } }, "featureId": "FEATURE_ID_2" } ] }
Para enviar tu solicitud, elige una de estas opciones:
curl
Guarda el cuerpo de la solicitud en un archivo llamado request.json
y ejecuta el siguiente comando:
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID/features:batchCreate"
PowerShell
Guarda el cuerpo de la solicitud en un archivo llamado request.json
y ejecuta el siguiente comando:
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID/features:batchCreate" | Select-Object -Expand Content
Deberías ver un resultado similar al siguiente. Puedes usar el OPERATION_ID en la respuesta para obtener el estado de la operación.
{ "name": "projects/PROJECT_NUMBER/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/operations/OPERATION_ID", "metadata": { "@type": "type.googleapis.com/google.cloud.aiplatform.v1.BatchCreateFeaturesOperationMetadata", "genericMetadata": { "createTime": "2021-03-02T00:04:13.039166Z", "updateTime": "2021-03-02T00:04:13.039166Z" } } }
Python
Si deseas obtener información para instalar o actualizar el SDK de Vertex AI para Python, consulta Instala el SDK de Vertex AI para Python. Si deseas obtener más información, consulta la documentación de referencia de la API de Python.
Python
La biblioteca cliente de Vertex AI se incluye cuando instalas el SDK de Vertex AI para Python. Si deseas obtener información sobre cómo instalar el SDK de Vertex AI para Python, consulta Instala el SDK de Vertex AI para Python. Si deseas obtener más información, consulta la documentación de referencia del SDK de AI de Vertex para la API de Python.
Java
Antes de probar este ejemplo, sigue las instrucciones de configuración para Java incluidas en la guía de inicio rápido de Vertex AI sobre cómo usar bibliotecas cliente. Para obtener más información, consulta la documentación de referencia de la API de Vertex AI Java.
Para autenticarte en Vertex AI, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.
Node.js
Antes de probar este ejemplo, sigue las instrucciones de configuración para Node.js incluidas en la guía de inicio rápido de Vertex AI sobre cómo usar bibliotecas cliente. Para obtener más información, consulta la documentación de referencia de la API de Vertex AI Node.js.
Para autenticarte en Vertex AI, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.
Enumerar funciones
Enumera todos los atributos en una ubicación determinada. Para buscar atributos en todos los tipos de entidades y featurestores en una ubicación determinada, consulta el método Búsqueda de atributos.
IU web
- En la sección de Vertex AI de la consola de Google Cloud, ve a la página Funciones.
- Selecciona una región de la lista desplegable Región.
- En la tabla de atributos, consulta la columna Funciones a fin de ver las características de tu proyecto para la región seleccionada.
REST
Para enumerar todas las funciones de un solo tipo de entidad, envía una solicitud GET mediante el método featurestores.entityTypes.features.list.
Antes de usar cualquiera de los datos de solicitud a continuación, realiza los siguientes reemplazos:
- LOCATION_ID: Región donde se encuentra el featurestore, como
us-central1
. - PROJECT_ID: El ID del proyecto.
- FEATURESTORE_ID: ID del featurestore.
- ENTITY_TYPE_ID: ID del tipo de entidad.
Método HTTP y URL:
GET https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID/features
Para enviar tu solicitud, elige una de estas opciones:
curl
Ejecuta el siguiente comando:
curl -X GET \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
"https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID/features"
PowerShell
Ejecuta el siguiente comando:
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }
Invoke-WebRequest `
-Method GET `
-Headers $headers `
-Uri "https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID/features" | Select-Object -Expand Content
Deberías recibir una respuesta JSON similar a la que se muestra a continuación:
{ "features": [ { "name": "projects/PROJECT_NUMBER/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID/features/FEATURE_ID_1", "description": "DESCRIPTION", "valueType": "VALUE_TYPE", "createTime": "2021-03-01T22:41:20.626644Z", "updateTime": "2021-03-01T22:41:20.626644Z", "labels": { "environment": "testing" }, "etag": "AMEw9yP0qJeLao6P3fl9cKEGY4ie5-SanQaiN7c_Ca4QOa0u7AxwO6i75Vbp0Cr51MSf" }, { "name": "projects/PROJECT_NUMBER/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID/features/FEATURE_ID_2", "description": "DESCRIPTION", "valueType": "VALUE_TYPE", "createTime": "2021-02-25T01:27:00.544230Z", "updateTime": "2021-02-25T01:27:00.544230Z", "labels": { "environment": "testing" }, "etag": "AMEw9yMdrLZ7Waty0ane-DkHq4kcsIVC-piqJq7n6A_Y-BjNzPY4rNlokDHNyUqC7edw" }, { "name": "projects/PROJECT_NUMBER/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID/features/FEATURE_ID_3", "description": "DESCRIPTION", "valueType": "VALUE_TYPE", "createTime": "2021-03-01T22:41:20.628493Z", "updateTime": "2021-03-01T22:41:20.628493Z", "labels": { "environment": "testing" }, "etag": "AMEw9yM-sAkv-u-jzkUOToaAVovK7GKbrubd9DbmAonik-ojTWG8-hfSRYt6jHKRTQ35" } ] }
Java
Antes de probar este ejemplo, sigue las instrucciones de configuración para Java incluidas en la guía de inicio rápido de Vertex AI sobre cómo usar bibliotecas cliente. Para obtener más información, consulta la documentación de referencia de la API de Vertex AI Java.
Para autenticarte en Vertex AI, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.
Node.js
Antes de probar este ejemplo, sigue las instrucciones de configuración para Node.js incluidas en la guía de inicio rápido de Vertex AI sobre cómo usar bibliotecas cliente. Para obtener más información, consulta la documentación de referencia de la API de Vertex AI Node.js.
Para autenticarte en Vertex AI, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.
Idiomas adicionales
Si deseas obtener información sobre cómo instalar y usar el SDK de Vertex AI para Python, consulta Cómo usar el SDK de Vertex AI para Python. Si deseas obtener más información, consulta la documentación de referencia del SDK de IA de Vertex para Python.
Busca funciones
Busca atributos basados en una o más de sus propiedades, como el ID del atributo, el ID de tipo de entidad o la descripción del atributo. Vertex AI Feature Store (Legacy) busca en todos los almacenes de entidades y tipos de entidades en una ubicación determinada. También puedes limitar los resultados si filtras por featurestores, tipos de valor y etiquetas específicos.
Para enumerar todas las funciones, consulta la sección sobre Enumera funciones.
IU web
- En la sección de Vertex AI de la consola de Google Cloud, ve a la página Funciones.
- Selecciona una región de la lista desplegable Región.
- Haz clic en el campo Filtro de la tabla de funciones.
- Selecciona una propiedad para filtrar, como Función, que muestra atributos que contienen una string coincidente en cualquier parte de su ID.
- Escribe un valor para el filtro y presiona Intro. Vertex AI Feature Store (Legacy) muestra los resultados en la tabla de atributos.
- Para agregar filtros adicionales, vuelve a hacer clic en el campo Filtro.
REST
Para buscar atributos, envía una solicitud GET mediante el método featurestores.searchFeatures. En el siguiente ejemplo, se usan varios parámetros de búsqueda, escritos como featureId:test AND valueType=STRING
. La consulta muestra atributos que contienen test
en su ID y cuyos valores son del tipo STRING
.
Antes de usar cualquiera de los datos de solicitud a continuación, realiza los siguientes reemplazos:
- LOCATION_ID: Región donde se encuentra el featurestore, como
us-central1
. - PROJECT_ID: El ID del proyecto.
Método HTTP y URL:
GET https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores:searchFeatures?query="featureId:test%20AND%20valueType=STRING"
Para enviar tu solicitud, elige una de estas opciones:
curl
Ejecuta el siguiente comando:
curl -X GET \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
"https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores:searchFeatures?query="featureId:test%20AND%20valueType=STRING""
PowerShell
Ejecuta el siguiente comando:
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }
Invoke-WebRequest `
-Method GET `
-Headers $headers `
-Uri "https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores:searchFeatures?query="featureId:test%20AND%20valueType=STRING"" | Select-Object -Expand Content
Deberías recibir una respuesta JSON similar a la que se muestra a continuación:
{ "features": [ { "name": "projects/PROJECT_NUMBER/locations/LOCATION_IDfeature-delete.html/featurestores/featurestore_demo/entityTypes/testing/features/test1", "description": "featurestore test1", "createTime": "2021-02-26T18:16:09.528185Z", "updateTime": "2021-02-26T18:16:09.528185Z", "labels": { "environment": "testing" } } ] }
Java
Antes de probar este ejemplo, sigue las instrucciones de configuración para Java incluidas en la guía de inicio rápido de Vertex AI sobre cómo usar bibliotecas cliente. Para obtener más información, consulta la documentación de referencia de la API de Vertex AI Java.
Para autenticarte en Vertex AI, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.
Node.js
Antes de probar este ejemplo, sigue las instrucciones de configuración para Node.js incluidas en la guía de inicio rápido de Vertex AI sobre cómo usar bibliotecas cliente. Para obtener más información, consulta la documentación de referencia de la API de Vertex AI Node.js.
Para autenticarte en Vertex AI, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.
Idiomas adicionales
Si deseas obtener información sobre cómo instalar y usar el SDK de Vertex AI para Python, consulta Cómo usar el SDK de Vertex AI para Python. Si deseas obtener más información, consulta la documentación de referencia del SDK de IA de Vertex para Python.
View feature details
Ver detalles sobre un atributo, como su tipo de valor o descripción. Si usas la consola de Google Cloud y tienes habilitada la supervisión de funciones, también puedes ver la distribución de los valores de las funciones en el tiempo.
IU web
- En la sección de Vertex AI de la consola de Google Cloud, ve a la página Funciones.
- Selecciona una región de la lista desplegable Región.
- En la tabla de atributos, consulta la columna Funciones para encontrar el elemento del que deseas ver los detalles.
- Haz clic en el nombre de un atributo para ver sus detalles.
- Para ver sus métricas, haz clic en Métricas. Vertex AI Feature Store (Legacy) proporciona métricas de distribución de atributos para la función.
REST
Para obtener detalles sobre un atributo, envía una solicitud GET mediante el método featurestores.entityTypes.features.get.
Antes de usar cualquiera de los datos de solicitud a continuación, realiza los siguientes reemplazos:
- LOCATION_ID: Región donde se encuentra el featurestore, como
us-central1
. - PROJECT_ID: El ID del proyecto.
- FEATURESTORE_ID: ID del featurestore.
- ENTITY_TYPE_ID: ID del tipo de entidad.
- FEATURE_ID: ID del atributo.
Método HTTP y URL:
GET https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID/features/FEATURE_ID
Para enviar tu solicitud, elige una de estas opciones:
curl
Ejecuta el siguiente comando:
curl -X GET \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
"https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID/features/FEATURE_ID"
PowerShell
Ejecuta el siguiente comando:
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }
Invoke-WebRequest `
-Method GET `
-Headers $headers `
-Uri "https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID/features/FEATURE_ID" | Select-Object -Expand Content
Deberías recibir una respuesta JSON similar a la que se muestra a continuación:
{ "name": "projects/PROJECT_NUMBER/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID/features/FEATURE_ID", "description": "DESCRIPTION", "valueType": "VALUE_TYPE", "createTime": "2021-03-01T22:41:20.628493Z", "updateTime": "2021-03-01T22:41:20.628493Z", "labels": { "environment": "testing" }, "etag": "AMEw9yOZbdYKHTyjV22ziZR1vUX3nWOi0o2XU3-OADahSdfZ8Apklk_qPruhF-o1dOSD", "monitoringConfig": {} }
Java
Antes de probar este ejemplo, sigue las instrucciones de configuración para Java incluidas en la guía de inicio rápido de Vertex AI sobre cómo usar bibliotecas cliente. Para obtener más información, consulta la documentación de referencia de la API de Vertex AI Java.
Para autenticarte en Vertex AI, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.
Node.js
Antes de probar este ejemplo, sigue las instrucciones de configuración para Node.js incluidas en la guía de inicio rápido de Vertex AI sobre cómo usar bibliotecas cliente. Para obtener más información, consulta la documentación de referencia de la API de Vertex AI Node.js.
Para autenticarte en Vertex AI, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.
Idiomas adicionales
Si deseas obtener información sobre cómo instalar y usar el SDK de Vertex AI para Python, consulta Cómo usar el SDK de Vertex AI para Python. Si deseas obtener más información, consulta la documentación de referencia del SDK de IA de Vertex para Python.
Borra un atributo
Borrar una función y todos sus valores
IU web
- En la sección de Vertex AI de la consola de Google Cloud, ve a la página Funciones.
- Selecciona una región de la lista desplegable Región.
- En la tabla de atributos, consulta la columna Función y busca el atributo que deseas borrar.
- Haz clic en el nombre de la función.
- En la barra de acciones, haz clic en Borrar.
- Haz clic en Confirmar para borrar la función y sus valores.
REST
Para borrar una función, envía una solicitud BORRAR mediante el método featurestores.entityTypes.features.delete.
Antes de usar cualquiera de los datos de solicitud a continuación, realiza los siguientes reemplazos:
- LOCATION_ID: Región donde se encuentra el featurestore, como
us-central1
. - PROJECT_ID: El ID del proyecto.
- FEATURESTORE_ID: ID del featurestore.
- ENTITY_TYPE_ID: ID del tipo de entidad.
- FEATURE_ID: ID del atributo.
Método HTTP y URL:
DELETE https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID/features/FEATURE_ID
Para enviar tu solicitud, elige una de estas opciones:
curl
Ejecuta el siguiente comando:
curl -X DELETE \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
"https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID/features/FEATURE_ID"
PowerShell
Ejecuta el siguiente comando:
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }
Invoke-WebRequest `
-Method DELETE `
-Headers $headers `
-Uri "https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID/features/FEATURE_ID" | Select-Object -Expand Content
Deberías recibir una respuesta JSON similar a la que se muestra a continuación:
{ "name": "projects/PROJECT_NUMBER/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/operations/OPERATION_ID", "metadata": { "@type": "type.googleapis.com/google.cloud.aiplatform.v1.DeleteOperationMetadata", "genericMetadata": { "createTime": "2021-02-26T17:32:56.008325Z", "updateTime": "2021-02-26T17:32:56.008325Z" } }, "done": true, "response": { "@type": "type.googleapis.com/google.protobuf.Empty" } }
Java
Antes de probar este ejemplo, sigue las instrucciones de configuración para Java incluidas en la guía de inicio rápido de Vertex AI sobre cómo usar bibliotecas cliente. Para obtener más información, consulta la documentación de referencia de la API de Vertex AI Java.
Para autenticarte en Vertex AI, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.
Node.js
Antes de probar este ejemplo, sigue las instrucciones de configuración para Node.js incluidas en la guía de inicio rápido de Vertex AI sobre cómo usar bibliotecas cliente. Para obtener más información, consulta la documentación de referencia de la API de Vertex AI Node.js.
Para autenticarte en Vertex AI, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.
Idiomas adicionales
Si deseas obtener información sobre cómo instalar y usar el SDK de Vertex AI para Python, consulta Cómo usar el SDK de Vertex AI para Python. Si deseas obtener más información, consulta la documentación de referencia del SDK de IA de Vertex para Python.
¿Qué sigue?
- Descubre cómo importar por lotes los valores de atributos.
- Aprende a supervisar los valores de los atributos importados con el tiempo.
- Obtén más información sobre cómo entregar funciones a través de la entrega en línea o la entrega por lotes.
- Soluciona problemas comunes de Vertex AI Feature Store (heredado).