Pelajari cara membuat, mencantumkan, dan menghapus jenis entity.
Membuat jenis entity
Buat jenis entity agar Anda dapat membuat fitur terkaitnya.
UI web
- Di bagian Vertex AI pada Konsol Google Cloud, buka halaman Features.
- Dari panel tindakan, klik Buat jenis entity untuk membuka panel Buat jenis entity.
- Pilih region dari menu drop-down Region yang menyertakan featurestore tempat Anda ingin membuat jenis entity.
- Pilih featurestore.
- Tentukan nama untuk jenis entity.
- Jika Anda ingin menyertakan deskripsi untuk jenis entity, masukkan deskripsi.
- Untuk mengaktifkan pemantauan nilai fitur (Pratinjau), tetapkan pemantauan ke Diaktifkan, lalu tentukan interval snapshot dalam hari. Konfigurasi pemantauan ini berlaku untuk semua fitur dalam jenis entity ini. Untuk mengetahui informasi selengkapnya, lihat Pemantauan nilai fitur.
- Klik Buat.
Terraform
Contoh berikut menunjukkan cara membuat featurestore baru, lalu menggunakan resource Terraform google_vertex_ai_featurestore_entitytype
untuk membuat jenis entity yang bernama featurestore_entitytype
dalam app store tersebut.
Untuk mempelajari cara menerapkan atau menghapus konfigurasi Terraform, lihat Perintah dasar Terraform.
REST
Untuk membuat jenis entity, kirim permintaan POST menggunakan metode featurestores.entityTypes.create.
Sebelum menggunakan data permintaan mana pun, lakukan penggantian berikut:
- LOCATION_ID: Region tempat featurestore berada, seperti
us-central1
. - PROJECT_ID: Project ID Anda.
- FEATURESTORE_ID: ID featurestore.
- ENTITY_TYPE_ID: ID jenis entity.
- DESCRIPTION: Deskripsi jenis entity.
Metode HTTP dan URL:
POST https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes?entityTypeId=ENTITY_TYPE_ID
Isi JSON permintaan:
{ "description": "DESCRIPTION" }
Untuk mengirim permintaan Anda, pilih salah satu opsi berikut:
curl
Simpan isi permintaan dalam file bernama request.json
,
dan jalankan perintah berikut:
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes?entityTypeId=ENTITY_TYPE_ID"
PowerShell
Simpan isi permintaan dalam file bernama request.json
,
dan jalankan perintah berikut:
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes?entityTypeId=ENTITY_TYPE_ID" | Select-Object -Expand Content
Anda akan melihat output yang mirip dengan berikut ini: Anda dapat menggunakan OPERATION_ID sebagai respons untuk mendapatkan status operasi.
{ "name": "projects/PROJECT_NUMBER/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/bikes/operations/OPERATION_ID", "metadata": { "@type": "type.googleapis.com/google.cloud.aiplatform.v1.CreateEntityTypeOperationMetadata", "genericMetadata": { "createTime": "2021-03-02T00:04:13.039166Z", "updateTime": "2021-03-02T00:04:13.039166Z" } } }
Python
Untuk mempelajari cara menginstal atau mengupdate Vertex AI SDK untuk Python, lihat Menginstal Vertex AI SDK untuk Python. Untuk mengetahui informasi selengkapnya, lihat Dokumentasi referensi Python API.
Java
Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Java di Panduan memulai Vertex AI menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat Dokumentasi referensi API Java Vertex AI.
Untuk melakukan autentikasi ke Vertex AI, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.
Node.js
Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Node.js di Panduan memulai Vertex AI menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat Dokumentasi referensi API Node.js Vertex AI.
Untuk melakukan autentikasi ke Vertex AI, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.
Membuat daftar jenis entity
Membuat daftar semua jenis entity di featurestore.
UI web
- Di bagian Vertex AI pada Konsol Google Cloud, buka halaman Features.
- Pilih region dari menu drop-down Region.
- Dalam tabel fitur, lihat kolom Jenis entity untuk melihat jenis entity dalam project Anda untuk region yang dipilih.
REST
Untuk membuat daftar jenis entity, kirim permintaan GET menggunakan metode featurestores.entityTypes.list.
Sebelum menggunakan data permintaan mana pun, lakukan penggantian berikut:
- LOCATION_ID: Region tempat featurestore berada, seperti
us-central1
. - PROJECT_ID: Project ID Anda.
- FEATURESTORE_ID: ID featurestore.
Metode HTTP dan URL:
GET https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes
Untuk mengirim permintaan Anda, pilih salah satu opsi berikut:
curl
Jalankan perintah berikut:
curl -X GET \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
"https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes"
PowerShell
Jalankan perintah berikut:
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }
Invoke-WebRequest `
-Method GET `
-Headers $headers `
-Uri "https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes" | Select-Object -Expand Content
Anda akan menerima respons JSON yang mirip seperti berikut:
{ "entityTypes": [ { "name": "projects/PROJECT_NUMBER/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID_1", "description": "ENTITY_TYPE_DESCRIPTION", "createTime": "2021-02-25T01:20:43.082628Z", "updateTime": "2021-02-25T01:20:43.082628Z", "etag": "AMEw9yOBqKIdbBGZcxdKLrlZJAf9eTO2DEzcE81YDKA2LymDMFB8ucRbmKwKo2KnvOg=" }, { "name": "projects/PROJECT_NUMBER/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID_2", "description": "ENTITY_TYPE_DESCRIPTION", "createTime": "2021-02-25T01:34:26.198628Z", "updateTime": "2021-02-25T01:34:26.198628Z", "etag": "AMEw9yNuv-ILYG8VLLm1lgIKc7asGIAVFErjvH2Cyc_wIQm7d6DL4ZGv59cwZmxTumU=" } ] }
Java
Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Java di panduan memulai Vertex AI menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat Dokumentasi referensi API Java Vertex AI.
Untuk melakukan autentikasi ke Vertex AI, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.
Node.js
Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Node.js di Panduan memulai Vertex AI menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat Dokumentasi referensi API Node.js Vertex AI.
Untuk melakukan autentikasi ke Vertex AI, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.
Bahasa tambahan
Untuk mempelajari cara menginstal dan menggunakan Vertex AI SDK untuk Python, lihat Menggunakan Vertex AI SDK untuk Python. Untuk mengetahui informasi selengkapnya, lihat dokumentasi referensi API Vertex AI SDK untuk Python.
Menghapus jenis entity
Hapus jenis entity. Jika Anda menggunakan Konsol Google Cloud,
Vertex AI Feature Store (Lama) akan menghapus jenis entity beserta semua
kontennya. Jika Anda menggunakan API, aktifkan parameter kueri force
untuk menghapus
jenis entity beserta semua kontennya.
UI web
- Di bagian Vertex AI pada Konsol Google Cloud, buka halaman Features.
- Pilih region dari menu drop-down Region.
- Dalam tabel fitur, lihat kolom Jenis entity lalu cari jenis entity yang akan dihapus.
- Klik nama jenis entity.
- Dari panel tindakan, klik Hapus.
- Klik Konfirmasi untuk menghapus jenis entity.
REST
Untuk menghapus jenis entity, kirim permintaan DELETE menggunakan metode featurestores.entityTypes.delete.
Sebelum menggunakan data permintaan mana pun, lakukan penggantian berikut:
- LOCATION_ID: Region tempat featurestore berada, seperti
us-central1
. - PROJECT_ID: Project ID Anda.
- FEATURESTORE_ID: ID featurestore.
- ENTITY_TYPE_ID: ID jenis entity.
- BOOLEAN: Menghapus jenis entity meskipun
berisi fitur. Parameter kueri
force
bersifat opsional dan bernilaifalse
secara default.
Metode HTTP dan URL:
DELETE https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID?force=BOOLEAN
Untuk mengirim permintaan Anda, pilih salah satu opsi berikut:
curl
Jalankan perintah berikut:
curl -X DELETE \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
"https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID?force=BOOLEAN"
PowerShell
Jalankan perintah berikut:
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }
Invoke-WebRequest `
-Method DELETE `
-Headers $headers `
-Uri "https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID?force=BOOLEAN" | Select-Object -Expand Content
Anda akan menerima respons JSON yang mirip seperti berikut:
{ "name": "projects/PROJECT_NUMBER/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/operations/OPERATION_ID", "metadata": { "@type": "type.googleapis.com/google.cloud.aiplatform.v1.DeleteOperationMetadata", "genericMetadata": { "createTime": "2021-02-26T17:32:56.008325Z", "updateTime": "2021-02-26T17:32:56.008325Z" } }, "done": true, "response": { "@type": "type.googleapis.com/google.protobuf.Empty" } }
Java
Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Java di panduan memulai Vertex AI menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat Dokumentasi referensi API Java Vertex AI.
Untuk melakukan autentikasi ke Vertex AI, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.
Node.js
Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Node.js di Panduan memulai Vertex AI menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat Dokumentasi referensi API Node.js Vertex AI.
Untuk melakukan autentikasi ke Vertex AI, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.
Bahasa tambahan
Untuk mempelajari cara menginstal dan menggunakan Vertex AI SDK untuk Python, lihat Menggunakan Vertex AI SDK untuk Python. Untuk mengetahui informasi selengkapnya, lihat dokumentasi referensi API Vertex AI SDK untuk Python.
Langkah berikutnya
- Pelajari cara mengelola fitur.
- Pelajari cara memantau nilai fitur yang diimpor dari waktu ke waktu.
- Lihat kuota jenis entity Vertex AI Feature Store (Lama).
- Memecahkan masalah umum Vertex AI Feature Store (Lama).