Gérer les types d'entités

Découvrez comment créer, répertorier et supprimer des types d'entités.

Créer un type d'entité

Créez un type d'entité afin de pouvoir créer ses caractéristiques associées.

UI Web

  1. Dans la section "Vertex AI" de Google Cloud Console, accédez à la page Caractéristiques.

    Accéder à la page "Caractéristiques"

  2. Dans la barre d'action, cliquez sur Créer un type d'entité pour ouvrir le volet Créer un type d'entité.
  3. Dans la liste déroulante Région, sélectionnez une région incluant le featurestore (magasin de caractéristiques) dans lequel vous souhaitez créer un type d'entité.
  4. Sélectionnez un magasin de caractéristiques.
  5. Indiquez le nom du type d'entité.
  6. Si vous le souhaitez, vous pouvez saisir la description du type d'entité.
  7. Pour activer la surveillance des valeurs de fonctionnalités (Bêta), définissez la surveillance sur Activé, puis spécifiez l'intervalle d'instantanés en jours. Cette configuration de surveillance s'applique à toutes les fonctionnalités de ce type d'entité. Pour plus d'informations, consultez la page Surveillance des valeurs de fonctionnalités.
  8. Cliquez sur Créer.

Terraform

L'exemple suivant crée un magasin de caractéristiques, puis utilise la ressource Terraform google_vertex_ai_featurestore_entitytype pour créer un type d'entité nommé featurestore_entitytype dans ce magasin de caractéristiques.

Pour savoir comment appliquer ou supprimer une configuration Terraform, consultez la page Commandes Terraform de base.

# Featurestore name must be unique for the project
resource "random_id" "featurestore_name_suffix" {
  byte_length = 8
}

resource "google_vertex_ai_featurestore" "featurestore" {
  name   = "featurestore_${random_id.featurestore_name_suffix.hex}"
  region = "us-central1"
  labels = {
    environment = "testing"
  }

  online_serving_config {
    fixed_node_count = 1
  }

  force_destroy = true
}

output "featurestore_id" {
  value = google_vertex_ai_featurestore.featurestore.id
}

resource "google_vertex_ai_featurestore_entitytype" "entity" {
  name = "featurestore_entitytype"
  labels = {
    environment = "testing"
  }

  featurestore = google_vertex_ai_featurestore.featurestore.id

  monitoring_config {
    snapshot_analysis {
      disabled = false
    }
  }

  depends_on = [google_vertex_ai_featurestore.featurestore]
}

REST

Pour créer un type d'entité, envoyez une requête POST à l'aide de la méthode featurestores.entityTypes.create.

Avant d'utiliser les données de requête ci-dessous, effectuez les remplacements suivants :

  • LOCATION_ID : région où se trouve le featurestore, par exemple us-central1.
  • PROJECT_ID : ID de votre projet
  • FEATURESTORE_ID : ID du featurestore.
  • ENTITY_TYPE_ID : ID du type d'entité.
  • DESCRIPTION : description du type d'entité.

Méthode HTTP et URL :

POST https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes?entityTypeId=ENTITY_TYPE_ID

Corps JSON de la requête :

{
  "description": "DESCRIPTION"
}

Pour envoyer votre requête, choisissez l'une des options suivantes :

curl

Enregistrez le corps de la requête dans un fichier nommé request.json, puis exécutez la commande suivante :

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes?entityTypeId=ENTITY_TYPE_ID"

PowerShell

Enregistrez le corps de la requête dans un fichier nommé request.json, puis exécutez la commande suivante :

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes?entityTypeId=ENTITY_TYPE_ID" | Select-Object -Expand Content

Des résultats semblables aux lignes suivantes devraient s'afficher : Vous pouvez utiliser OPERATION_ID dans la réponse pour obtenir l'état de l'opération.

{
  "name": "projects/PROJECT_NUMBER/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/bikes/operations/OPERATION_ID",
  "metadata": {
    "@type": "type.googleapis.com/google.cloud.aiplatform.v1.CreateEntityTypeOperationMetadata",
    "genericMetadata": {
      "createTime": "2021-03-02T00:04:13.039166Z",
      "updateTime": "2021-03-02T00:04:13.039166Z"
    }
  }
}

SDK Vertex AI pour Python

Pour savoir comment installer le SDK Vertex AI pour Python, consultez la section Installer le SDK Vertex AI pour Python. Pour en savoir plus, consultez la documentation de référence de l'API SDK Vertex AI pour Python.

from google.cloud import aiplatform

def create_entity_type_sample(
    project: str,
    location: str,
    entity_type_id: str,
    featurestore_name: str,
):

    aiplatform.init(project=project, location=location)

    my_entity_type = aiplatform.EntityType.create(
        entity_type_id=entity_type_id, featurestore_name=featurestore_name
    )

    my_entity_type.wait()

    return my_entity_type

Python

La bibliothèque cliente pour Vertex AI est incluse lorsque vous installez le SDK Vertex AI pour Python. Pour savoir comment installer le SDK Vertex AI pour Python, consultez la section Installer le SDK Vertex AI pour Python. Pour en savoir plus, consultez la documentation de référence de l'API SDK Vertex AI pour Python.