Esporta modelli tabulari AutoML

Questa pagina descrive come utilizzare Vertex AI per esportare i dati tabulari AutoML in Cloud Storage, scaricalo su un server on-premise ospitato da un altro cloud provider, e poi usare Docker per creare il modello disponibili per le previsioni.

Per informazioni sull'esportazione dei modelli Edge di immagini e video, consulta Esportare i modelli AutoML Edge.

Dopo aver esportato il modello tabulare, per reimportarlo Vertex AI, vedi Importa modelli in Vertex AI.

Limitazioni

L'esportazione dei modelli tabulari AutoML presenta le seguenti limitazioni:

  • Puoi esportare solo i modelli di classificazione e regressione tabulari AutoML. L'esportazione dei modelli di previsione tabulari AutoML supportati.

  • Vertex Explainable AI non è disponibile con i modelli tabulari esportati. Per se usi Vertex Explainable AI, devi fornire previsioni da un modello ospitato Vertex AI.

  • Il modello tabulare esportato può essere eseguito solo su CPU con architettura x86 che supportano gli insiemi di istruzioni AVX (Advanced Vector Extensions).

Processo di esportazione

I passaggi per esportare il modello sono:

  1. Configura l'ambiente.
  2. Esporta il modello.
  3. Esegui il pull ed esegui il server del modello.
  4. Richiedi previsioni.

Prima di iniziare

Prima di poter completare questa attività, devi aver completato le seguenti attività:

Esporta il modello

Console

  1. Nella console Google Cloud, nella sezione Vertex AI, vai alla pagina Modelli.

    Vai alla pagina Modelli

  2. Fai clic sul modello tabulare da esportare per aprire la relativa pagina dei dettagli.

  3. Fai clic su Esporta nella barra dei pulsanti per esportare il modello.

  4. Seleziona o crea una cartella Cloud Storage nella posizione che preferisci.

    Il bucket deve soddisfare i requisiti dei bucket.

    Non puoi esportare un modello in un bucket di primo livello. Devi utilizzare almeno a un livello della cartella.

    Per risultati ottimali, crea una nuova cartella vuota. Dovrai copiare l'intero contenuto della cartella in un passaggio successivo.

  5. Fai clic su Esporta.

    Nella sezione successiva scaricherai il modello esportato sul tuo server.

REST

Puoi utilizzare models.export per esportare un modello in di archiviazione ideale in Cloud Storage.

Prima di utilizzare i dati della richiesta, apporta le seguenti sostituzioni:

  • LOCATION: la tua regione.
  • PROJECT: il tuo ID progetto.
  • MODEL_ID: l'ID del modello da esportare.
  • GCS_DESTINATION : la tua cartella di destinazione in di archiviazione ideale in Cloud Storage. Ad esempio, gs://export-bucket/exports.

    Non puoi esportare un modello in un bucket di primo livello. Devi utilizzare almeno un livello di cartella.

    La cartella deve essere conforme ai requisiti dei bucket.

    Per ottenere risultati ottimali, crea una nuova cartella. Copia l'intero contenuto della cartella in un passaggio successivo.

Metodo HTTP e URL:

POST https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/models/MODEL_ID:export

Corpo JSON della richiesta:

{
  "outputConfig": {
    "exportFormatId": "tf-saved-model",
    "artifactDestination": {
      "outputUriPrefix": "GCS_DESTINATION"
    }
  }
}

Per inviare la richiesta, scegli una delle seguenti opzioni:

curl

Salva il corpo della richiesta in un file denominato request.json. ed esegui questo comando:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/models/MODEL_ID:export"

PowerShell

Salva il corpo della richiesta in un file denominato request.json. ed esegui questo comando:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/models/MODEL_ID:export" | Select-Object -Expand Content

Dovresti ricevere una risposta JSON simile alla seguente:

{
  "name": "projects/PROJECT_NUMBER/locations/LOCATION/models/MODEL_ID/operations/OPERATION_ID",
  "metadata": {
    "@type": "type.googleapis.com/google.cloud.aiplatform.v1.ExportModelOperationMetadata",
    "genericMetadata": {
      "createTime": "2020-10-12T20:53:40.130785Z",
      "updateTime": "2020-10-12T20:53:40.130785Z"
    },
    "outputInfo": {
      "artifactOutputUri": "gs://OUTPUT_BUCKET/model-MODEL_ID/EXPORT_FORMAT/YYYY-MM-DDThh:mm:ss.sssZ"
    }
  }
}

Java

Prima di provare questo esempio, segui le istruzioni per la configurazione di Java nel Guida rapida di Vertex AI con librerie client. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Java di Vertex AI.

Per eseguire l'autenticazione su Vertex AI, configura Credenziali predefinite dell'applicazione. Per maggiori informazioni, consulta Configurare l'autenticazione per un ambiente di sviluppo locale.


import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.aiplatform.v1.ExportModelOperationMetadata;
import com.google.cloud.aiplatform.v1.ExportModelRequest;
import com.google.cloud.aiplatform.v1.ExportModelResponse;
import com.google.cloud.aiplatform.v1.GcsDestination;
import com.google.cloud.aiplatform.v1.ModelName;
import com.google.cloud.aiplatform.v1.ModelServiceClient;
import com.google.cloud.aiplatform.v1.ModelServiceSettings;
import java.io.IOException;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;

public class ExportModelTabularClassificationSample {
  public static void main(String[] args)
      throws InterruptedException, ExecutionException, TimeoutException, IOException {
    // TODO(developer): Replace these variables before running the sample.
    String gcsDestinationOutputUriPrefix = "gs://your-gcs-bucket/destination_path";
    String project = "YOUR_PROJECT_ID";
    String modelId = "YOUR_MODEL_ID";
    exportModelTableClassification(gcsDestinationOutputUriPrefix, project, modelId);
  }

  static void exportModelTableClassification(
      String gcsDestinationOutputUriPrefix, String project, String modelId)
      throws IOException, ExecutionException, InterruptedException, TimeoutException {
    ModelServiceSettings modelServiceSettings =
        ModelServiceSettings.newBuilder()
            .setEndpoint("us-central1-aiplatform.googleapis.com:443")
            .build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (ModelServiceClient modelServiceClient = ModelServiceClient.create(modelServiceSettings)) {
      String location = "us-central1";
      ModelName modelName = ModelName.of(project, location, modelId);

      GcsDestination.Builder gcsDestination = GcsDestination.newBuilder();
      gcsDestination.setOutputUriPrefix(gcsDestinationOutputUriPrefix);
      ExportModelRequest.OutputConfig outputConfig =
          ExportModelRequest.OutputConfig.newBuilder()
              .setExportFormatId("tf-saved-model")
              .setArtifactDestination(gcsDestination)
              .build();

      OperationFuture<ExportModelResponse, ExportModelOperationMetadata> exportModelResponseFuture =
          modelServiceClient.exportModelAsync(modelName, outputConfig);
      System.out.format(
          "Operation name: %s\n", exportModelResponseFuture.getInitialFuture().get().getName());
      System.out.println("Waiting for operation to finish...");
      ExportModelResponse exportModelResponse =
          exportModelResponseFuture.get(300, TimeUnit.SECONDS);
      System.out.format(
          "Export Model Tabular Classification Response: %s", exportModelResponse.toString());
    }
  }
}

Node.js

Prima di provare questo esempio, segui le istruzioni per la configurazione di Node.js nel Guida rapida di Vertex AI con librerie client. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Node.js di Vertex AI.

Per eseguire l'autenticazione su Vertex AI, configura Credenziali predefinite dell'applicazione. Per ulteriori informazioni, vedi Configura l'autenticazione per un ambiente di sviluppo locale.

/**
 * TODO(developer): Uncomment these variables before running the sample.\
 * (Not necessary if passing values as arguments)
 */

// const gcsDestinationOutputUriPrefix ='YOUR_GCS_DESTINATION_\
// OUTPUT_URI_PREFIX'; eg. "gs://<your-gcs-bucket>/destination_path"
// const modelId = 'YOUR_MODEL_ID';
// const project = 'YOUR_PROJECT_ID';
// const location = 'YOUR_PROJECT_LOCATION';

// Imports the Google Cloud Model Service Client library
const {ModelServiceClient} = require('@google-cloud/aiplatform');

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: 'us-central1-aiplatform.googleapis.com',
};

// Instantiates a client
const modelServiceClient = new ModelServiceClient(clientOptions);

async function exportModelTabularClassification() {
  // Configure the name resources
  const name = `projects/${project}/locations/${location}/models/${modelId}`;
  // Configure the outputConfig resources
  const outputConfig = {
    exportFormatId: 'tf-saved-model',
    artifactDestination: {
      outputUriPrefix: gcsDestinationOutputUriPrefix,
    },
  };
  const request = {
    name,
    outputConfig,
  };

  // Export Model request
  const [response] = await modelServiceClient.exportModel(request);
  console.log(`Long running operation : ${response.name}`);

  // Wait for operation to complete
  await response.promise();
  console.log(`Export model response : ${JSON.stringify(response.result)}`);
}
exportModelTabularClassification();

Python

Per scoprire come installare o aggiornare l'SDK Vertex AI per Python, vedi Installare l'SDK Vertex AI per Python. Per saperne di più, consulta la documentazione di riferimento dell'API Python.

from google.cloud import aiplatform_v1beta1


def export_model_tabular_classification_sample(
    project: str,
    model_id: str,
    gcs_destination_output_uri_prefix: str,
    location: str = "us-central1",
    api_endpoint: str = "us-central1-aiplatform.googleapis.com",
    timeout: int = 300,
):
    # The AI Platform services require regional API endpoints.
    client_options = {"api_endpoint": api_endpoint}
    # Initialize client that will be used to create and send requests.
    # This client only needs to be created once, and can be reused for multiple requests.
    client = aiplatform_v1beta1.ModelServiceClient(client_options=client_options)
    gcs_destination = {"output_uri_prefix": gcs_destination_output_uri_prefix}
    output_config = {
        "artifact_destination": gcs_destination,
        "export_format_id": "tf-saved-model",
    }
    name = client.model_path(project=project, location=location, model=model_id)
    response = client.export_model(name=name, output_config=output_config)
    print("Long running operation:", response.operation.name)
    print("output_info:", response.metadata.output_info)
    export_model_response = response.result(timeout=timeout)
    print("export_model_response:", export_model_response)

Visualizzare lo stato di un'operazione di esportazione

Alcune richieste avviano operazioni a lunga esecuzione il cui completamento richiede tempo. Questi restituiscono il nome di un'operazione, che puoi utilizzare per visualizzare o annullare l'operazione. Vertex AI fornisce metodi di assistenza per effettuare chiamate a operazioni di lunga durata. Per ulteriori informazioni, consulta la sezione Utilizzo di modelli operazioni.

Esegui il pull ed esegui il server del modello

In questa attività, scaricherai il modello esportato da Cloud Storage e avvierai il contenitore Docker, in modo che il modello sia pronto per ricevere richieste di previsione.

Per estrarre ed eseguire il server del modello:

  1. Sulla macchina in cui eseguirai il modello, passa alla directory in cui vuoi salvare il modello esportato.

  2. Scarica il modello esportato:

    gcloud storage cp <var>gcs-destination</var> . --recursive
    

    Dove gcs-destination è il percorso della posizione del file esportato in Cloud Storage.

    Il modello viene copiato nella directory corrente, nel seguente percorso:

    ./model-<model-id>/tf-saved-model/<export-timestamp>

    Il percorso può contenere tf-saved-model o custom-trained.

  3. Rinomina la directory in modo che il timestamp venga rimosso.

    mv model-<model-id>/tf-saved-model/<export-timestamp> model-<model-id>/tf-saved-model/<new-dir-name>
    

    Il timestamp rende la directory non valida per Docker.

  4. Esegui il pull dell'immagine Docker del server del modello.

    sudo docker pull MODEL_SERVER_IMAGE
    

    L'immagine del server del modello da estrarre si trova nel file environment.json nella directory del modello esportato. Deve avere il seguente percorso:

    ./model-<model-id>/tf-saved-model/<new-dir-name>/environment.json

    Se non è presente alcun file environment.json, utilizza:

    MULTI_REGION-docker.pkg.dev/vertex-ai/automl-tabular/prediction-server-v1

    Sostituisci MULTI_REGION con us, europe o asia per selezionare il repository Docker da cui vuoi estrarre l'immagine Docker. Ogni repository fornisce la stessa immagine Docker, ma la scelta della regione multipla di Artifact Registry più vicina alla macchina su cui esegui Docker potrebbe ridurre la latenza.

  5. Avvia il container Docker utilizzando il nome della directory appena creato:

    docker run -v `pwd`/model-<model-id>/tf-saved-model/<new-dir-name>:/models/default -p 8080:8080 -it MODEL_SERVER_IMAGE
    

Puoi arrestare il server del modello in qualsiasi momento utilizzando Ctrl-C.

Aggiorna il container Docker del server del modello

Poiché scarichi il container Docker del server di modelli quando esporti il modello, devi aggiornare esplicitamente il server di modelli per ricevere aggiornamenti e correzioni di bug. Devi aggiornare il server del modello periodicamente utilizzando il seguente comando:

docker pull MODEL_SERVER_IMAGE

Assicurati che l'URI dell'immagine Docker corrisponda all'URI dell'immagine Docker che hai recuperato in precedenza.

Ricevi previsioni dal modello esportato

Il server di modelli nel contenitore di immagini Vertex AI gestisce le richieste di previsione e restituisce i risultati delle previsioni.

La previsione batch non è disponibile per i modelli esportati.

Formato dei dati di previsione

Fornisci i dati (campo payload) per la richiesta di previsione quanto segue Formato JSON:

{ "instances": [ { "column_name_1": value, "column_name_2": value, … } , … ] }

L'esempio seguente mostra una richiesta con tre colonne: una colonna categorica, un array numerico e una struttura. La richiesta include due righe.

{
  "instances": [
    {
      "categorical_col": "mouse",
      "num_array_col": [
        1,
        2,
        3
      ],
      "struct_col": {
        "foo": "piano",
        "bar": "2019-05-17T23:56:09.05Z"
      }
    },
    {
      "categorical_col": "dog",
      "num_array_col": [
        5,
        6,
        7
      ],
      "struct_col": {
        "foo": "guitar",
        "bar": "2019-06-17T23:56:09.05Z"
      }
    }
  ]
}

Effettua la richiesta di previsione

  1. Inserisci i dati della richiesta in un file di testo, ad esempio tmp/request.json.

    Il numero di righe di dati nella richiesta di previsione, chiamata mini-batch dimensioni, influisce sulla latenza e sulla velocità effettiva di previsione. Più grande è il mini- batch, più elevate sono la latenza e la velocità in bit. Per ridurre la latenza, utilizza un di mini-batch più piccole. Per aumentare la velocità effettiva, aumenta la dimensione del mini-batch. Le dimensioni più comuni dei mini-batch sono 1, 32, 64, 128, 256, 512, e 1024.

  2. Richiedi la previsione:

    curl -X POST --data @/tmp/request.json http://localhost:8080/predict
    

Formato dei risultati di previsione

Il formato dei risultati dipende dallo scopo del modello.

Risultati del modello di classificazione

I risultati di previsione per i modelli di classificazione (binari e multi-classe) restituiscono un punteggio di probabilità per ogni potenziale valore della colonna target. Devi determinare come vuoi utilizzare i punteggi. Ad esempio, per ottenere un file binario dalla classificazione fornita, identificheresti un valore di soglia. Se esistono due classi, "A" e "B", devi classificare l'esempio come "A" se il punteggio di "A" è maggiore della soglia scelta e "B" negli altri casi. Per i set di dati sbilanciati, la soglia potrebbe tendere al 100% o allo 0%.

Il payload dei risultati per un modello di classificazione è simile a questo esempio:

{
  "predictions": [
    {
      "scores": [
        0.539999994635582,
        0.2599999845027924,
        0.2000000208627896
      ],
      "classes": [
        "apple",
        "orange",
        "grape"
      ]
    },
    {
      "scores": [
        0.23999999463558197,
        0.35999998450279236,
        0.40000002086278963
      ],
      "classes": [
        "apple",
        "orange",
        "grape"
      ]
    }
  ]
}

Risultati del modello di regressione

Viene restituito un valore previsto per ogni riga valida della richiesta di previsione. Gli intervalli di previsione non vengono restituiti per i modelli esportati.

Il payload dei risultati per un modello di regressione è simile a questo esempio:

{
  "predictions": [
    {
      "value": -304.3663330078125,
      "lower_bound": -56.32196807861328,
      "upper_bound": 126.51904296875
    },
    {
      "value": -112.3663330078125,
      "lower_bound": 16.32196807861328,
      "upper_bound": 255.51904296875
    }
  ]
}

Passaggi successivi