Addestramento personalizzato di Vertex AI TensorBoard con container predefinito: notebook
Mantieni tutto organizzato con le raccolte
Salva e classifica i contenuti in base alle tue preferenze.
In questo tutorial imparerai a creare un job di addestramento personalizzato utilizzando container predefiniti e a monitorare il processo di addestramento su Vertex AI TensorBoard quasi in tempo reale.
Questo tutorial utilizza i seguenti servizi e risorse di Google Cloud ML:
Vertex AI Training
Vertex AI TensorBoard
I passaggi eseguiti includono:
Configura un account di servizio e i bucket Cloud Storage.
Scrivi il codice di addestramento personalizzato.
Pacchettizza e carica il codice di addestramento in Cloud Storage.
Crea e avvia il job di addestramento personalizzato con Vertex AI TensorBoard abilitato per il monitoraggio quasi in tempo reale.
[[["Facile da capire","easyToUnderstand","thumb-up"],["Il problema è stato risolto","solvedMyProblem","thumb-up"],["Altra","otherUp","thumb-up"]],[["Difficile da capire","hardToUnderstand","thumb-down"],["Informazioni o codice di esempio errati","incorrectInformationOrSampleCode","thumb-down"],["Mancano le informazioni o gli esempi di cui ho bisogno","missingTheInformationSamplesINeed","thumb-down"],["Problema di traduzione","translationIssue","thumb-down"],["Altra","otherDown","thumb-down"]],["Ultimo aggiornamento 2025-09-04 UTC."],[],[],null,["# Vertex AI TensorBoard custom training with prebuilt container: Notebook\n\nIn this tutorial, you learn how to create a custom training job using prebuilt\ncontainers, and monitor your training process on Vertex AI TensorBoard\nin near real time. \n| To see an example of tensorboard custom training with prebuilt container,\n| run the \"Vertex AI TensorBoard custom training with prebuilt container\" notebook in one of the following\n| environments:\n|\n| [Open in Colab](https://colab.research.google.com/github/GoogleCloudPlatform/vertex-ai-samples/blob/main/notebooks/official/tensorboard/tensorboard_custom_training_with_prebuilt_container.ipynb)\n|\n|\n| \\|\n|\n| [Open in Colab Enterprise](https://console.cloud.google.com/vertex-ai/colab/import/https%3A%2F%2Fraw.githubusercontent.com%2FGoogleCloudPlatform%2Fvertex-ai-samples%2Fmain%2Fnotebooks%2Fofficial%2Ftensorboard%2Ftensorboard_custom_training_with_prebuilt_container.ipynb)\n|\n|\n| \\|\n|\n| [Open\n| in Vertex AI Workbench](https://console.cloud.google.com/vertex-ai/workbench/deploy-notebook?download_url=https%3A%2F%2Fraw.githubusercontent.com%2FGoogleCloudPlatform%2Fvertex-ai-samples%2Fmain%2Fnotebooks%2Fofficial%2Ftensorboard%2Ftensorboard_custom_training_with_prebuilt_container.ipynb)\n|\n|\n| \\|\n|\n| [View on GitHub](https://github.com/GoogleCloudPlatform/vertex-ai-samples/blob/main/notebooks/official/tensorboard/tensorboard_custom_training_with_prebuilt_container.ipynb)\n\nThis tutorial uses the following Google Cloud ML services and resources:\n\n- Vertex AI training\n- Vertex AI TensorBoard\n\nThe steps performed include:\n\n- Set up a service account and Cloud Storage buckets.\n- Write your customized training code.\n- Package and upload your training code to Cloud Storage.\n- Create and launch your custom training job with Vertex AI TensorBoard enabled for near real time monitoring.\n\nRelevant content\n----------------\n\n- [Vertex AI TensorBoard](/vertex-ai/docs/experiments/tensorboard-introduction)\n- [Custom training](/vertex-ai/docs/training/overview)"]]