列出用于文本分类的数据集。
深入探索
如需查看包含此代码示例的详细文档,请参阅以下内容:
代码示例
Go
如需向 AutoML Natural Language 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证。
import (
"context"
"fmt"
"io"
automl "cloud.google.com/go/automl/apiv1"
"cloud.google.com/go/automl/apiv1/automlpb"
"google.golang.org/api/iterator"
)
// listDatasets lists existing datasets.
func listDatasets(w io.Writer, projectID string, location string) error {
// projectID := "my-project-id"
// location := "us-central1"
ctx := context.Background()
client, err := automl.NewClient(ctx)
if err != nil {
return fmt.Errorf("NewClient: %w", err)
}
defer client.Close()
req := &automlpb.ListDatasetsRequest{
Parent: fmt.Sprintf("projects/%s/locations/%s", projectID, location),
}
it := client.ListDatasets(ctx, req)
// Iterate over all results
for {
dataset, err := it.Next()
if err == iterator.Done {
break
}
if err != nil {
return fmt.Errorf("ListGlossaries.Next: %w", err)
}
fmt.Fprintf(w, "Dataset name: %v\n", dataset.GetName())
fmt.Fprintf(w, "Dataset display name: %v\n", dataset.GetDisplayName())
fmt.Fprintf(w, "Dataset create time:\n")
fmt.Fprintf(w, "\tseconds: %v\n", dataset.GetCreateTime().GetSeconds())
fmt.Fprintf(w, "\tnanos: %v\n", dataset.GetCreateTime().GetNanos())
// Language text classification
if metadata := dataset.GetTextClassificationDatasetMetadata(); metadata != nil {
fmt.Fprintf(w, "Text classification dataset metadata: %v\n", metadata)
}
}
return nil
}
Java
如需向 AutoML Natural Language 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证。
import com.google.cloud.automl.v1.AutoMlClient;
import com.google.cloud.automl.v1.Dataset;
import com.google.cloud.automl.v1.ListDatasetsRequest;
import com.google.cloud.automl.v1.LocationName;
import java.io.IOException;
class ListDatasets {
static void listDatasets() throws IOException {
// TODO(developer): Replace these variables before running the sample.
String projectId = "YOUR_PROJECT_ID";
listDatasets(projectId);
}
// List the datasets
static void listDatasets(String projectId) throws IOException {
// Initialize client that will be used to send requests. This client only needs to be created
// once, and can be reused for multiple requests. After completing all of your requests, call
// the "close" method on the client to safely clean up any remaining background resources.
try (AutoMlClient client = AutoMlClient.create()) {
// A resource that represents Google Cloud Platform location.
LocationName projectLocation = LocationName.of(projectId, "us-central1");
ListDatasetsRequest request =
ListDatasetsRequest.newBuilder().setParent(projectLocation.toString()).build();
// List all the datasets available in the region by applying filter.
System.out.println("List of datasets:");
for (Dataset dataset : client.listDatasets(request).iterateAll()) {
// Display the dataset information
System.out.format("\nDataset name: %s\n", dataset.getName());
// To get the dataset id, you have to parse it out of the `name` field. As dataset Ids are
// required for other methods.
// Name Form: `projects/{project_id}/locations/{location_id}/datasets/{dataset_id}`
String[] names = dataset.getName().split("/");
String retrievedDatasetId = names[names.length - 1];
System.out.format("Dataset id: %s\n", retrievedDatasetId);
System.out.format("Dataset display name: %s\n", dataset.getDisplayName());
System.out.println("Dataset create time:");
System.out.format("\tseconds: %s\n", dataset.getCreateTime().getSeconds());
System.out.format("\tnanos: %s\n", dataset.getCreateTime().getNanos());
System.out.format(
"Text classification dataset metadata: %s\n",
dataset.getTextClassificationDatasetMetadata());
}
}
}
}
Node.js
如需向 AutoML Natural Language 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证。
/**
* TODO(developer): Uncomment these variables before running the sample.
*/
// const projectId = 'YOUR_PROJECT_ID';
// const location = 'us-central1';
// Imports the Google Cloud AutoML library
const {AutoMlClient} = require('@google-cloud/automl').v1;
// Instantiates a client
const client = new AutoMlClient();
async function listDatasets() {
// Construct request
const request = {
parent: client.locationPath(projectId, location),
filter: 'translation_dataset_metadata:*',
};
const [response] = await client.listDatasets(request);
console.log('List of datasets:');
for (const dataset of response) {
console.log(`Dataset name: ${dataset.name}`);
console.log(
`Dataset id: ${
dataset.name.split('/')[dataset.name.split('/').length - 1]
}`
);
console.log(`Dataset display name: ${dataset.displayName}`);
console.log('Dataset create time');
console.log(`\tseconds ${dataset.createTime.seconds}`);
console.log(`\tnanos ${dataset.createTime.nanos / 1e9}`);
console.log(
`Text classification dataset metadata: ${dataset.textClassificationDatasetMetadata}`
);
}
}
listDatasets();
Python
如需向 AutoML Natural Language 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证。
from google.cloud import automl
# TODO(developer): Uncomment and set the following variables
# project_id = "YOUR_PROJECT_ID"
client = automl.AutoMlClient()
# A resource that represents Google Cloud Platform location.
project_location = f"projects/{project_id}/locations/us-central1"
# List all the datasets available in the region.
request = automl.ListDatasetsRequest(parent=project_location, filter="")
response = client.list_datasets(request=request)
print("List of datasets:")
for dataset in response:
print(f"Dataset name: {dataset.name}")
print("Dataset id: {}".format(dataset.name.split("/")[-1]))
print(f"Dataset display name: {dataset.display_name}")
print(f"Dataset create time: {dataset.create_time}")
print(
"Text classification dataset metadata: {}".format(
dataset.text_classification_dataset_metadata
)
)
后续步骤
如需搜索和过滤其他 Google Cloud 产品的代码示例,请参阅 Google Cloud 示例浏览器。