Schema and data transfer overview
This document discusses the concepts and tasks for transferring the schema and data from your existing data warehouse to BigQuery.
Migrating your data warehouse to the cloud is a complex process that requires planning, resources, and time. To tame this complexity, you should approach data warehouse migration in a staged and iterative manner. Doing several iterations of schema and data migration can improve the result.
Schema and data migration process
At the start of your migration journey, you have upstream systems that feed your existing data warehouse, and downstream systems that use that data in reports, dashboards, and as feeds to other processes.
This general flow of data supports many analytics use cases, as shown in the following diagram:
The end state of your journey is to have as many use cases as possible running on top of BigQuery. This state enables you to minimize the use of your existing data warehouse and to eventually phase it out. You're in control of which use cases are migrated and when, by prioritizing them during the prepare and discover phase of the migration.
Transfer schema and data to BigQuery
In the planning phase of the migration, you identify the use cases that you want to migrate. Then you start the migration iterations in the execute phase. To manage your iterations while running your analytics environment with minimal disruption, follow this high-level process:
Transfer tables and configure and test downstream processes.
- Transfer the group of tables for each use case to BigQuery without any changes, using BigQuery Data Transfer Service or another ETL tool. For information about tools, see the initial data transfer section.
- Configure test versions of your downstream processes to read from the BigQuery tables.
This initial step divides the flow of data. The following diagram shows the resulting flow. Some downstream systems now read from BigQuery as shown in the flows labeled B. Others still read from the existing data warehouse, as shown in the flows labeled A.
Configure some test upstream processes to write data to BigQuery tables instead of (or in addition to) the existing data warehouse.
After testing, configure your production upstream and downstream processes to write and read to the BigQuery tables. These processes can connect to BigQuery using the BigQuery API and incorporate new cloud products such as Looker Studio and Dataflow.
At this point, you have three flows of data:
- Existing. The data and processes are unchanged and still centered on your existing data warehouse.
- Offloaded. The upstream processes feed your existing data warehouse, the data is offloaded to BigQuery, and it then feeds downstream processes.
- Fully migrated.
The upstream and downstream processes don't write or
read from the existing data warehouse anymore.
The following diagram shows a system with all of these three flows:
Select additional use cases for migration, then go to step 1 to start a new execution iteration. Continue iterating through these steps until all your use cases are fully migrated into BigQuery. When selecting use cases, you can revisit ones that remained in the offloaded state to move them to fully migrated. For the use cases that are fully migrated, consider continuing the evolution process by following the guidelines in Evolve your schema in BigQuery.
Evolve your schema in BigQuery
The data warehouse schema defines how your data is structured and defines the relationships between your data entities. The schema is at the core of your data design, and it influences many processes, both upstream and downstream.
A data warehouse migration presents a unique opportunity to evolve your schema after it's moved to BigQuery. This section introduces guidelines for evolving your schema using a series of steps. These guidelines help you keep your data warehouse environment running during schema changes with minimal disruption to upstream and downstream processes.
The steps in this section focus on the schema transformation for a single use case.
Depending on how far you want to go with the evolution, you might stop at an intermediate step, or you might continue until your system is fully evolved.
Transfer a use case as is to BigQuery.
Before you continue with the next steps, make sure that the upstream and downstream processes of your use case are already writing and reading from BigQuery. However, it's also possible to start from an intermediate state where only the downstream process is reading from BigQuery. In this scenario, apply only the guidelines for the downstream part. The following diagram illustrates a use case where upstream and downstream processes write to and read from tables in BigQuery.
Apply light optimizations.
- Re-create your tables, applying partitioning and clustering. For this task, you can use the method of creating a table from a query result. For details, see the discussion and example for partitioned tables, and see the discussion and example for clustered tables.
- Redirect your upstream and downstream processes to the new tables.
Create facade views.
If you want to further evolve your schema beyond light optimizations, create facade views for your tables. The facade pattern is a design method that masks the underlying code or structures to hide complexity. In this case, the facade views mask the underlying tables to hide the complexity caused by table changes from the downstream processes.
The views can describe a new schema, free from technical debt, and modelled with new ingestion and consumption scenarios in mind.
Under the hood, the tables and the view query definition itself can change. But the views abstract away these changes as an internal implementation detail of your data warehouse, and they always return the same results. This abstraction layer made of facade views isolates your upstream and downstream systems from change for as long as needed, and only surfaces the changes when appropriate.
Transform downstream processes.
You can transform some of your downstream processes to read from the facade views instead of from the actual tables. These processes will already benefit from the evolved schema. It's transparent to these processes that under the hood, the facade views still get their data from the source BigQuery schema, as shown in the following diagram:
We've described the downstream process transformation first. This lets you show business value more quickly, in the form of migrated dashboards or reports, than if you transformed upstream processes that aren't visible to non-technical stakeholders. However, it's possible to start the transformation with your upstream processes instead. The priority of these tasks is entirely dependent on your needs.
Transform upstream processes.
You can transform some of your upstream processes to write into the new schema. Because views are read only, you create tables based on the new schema, and you then modify the query definition of the facade views. Some views will still query the source schema, while others will query the newly created tables, or perform a SQL
UNION
operation on both, as shown in the following diagram:At this point, you can take advantage of nested and repeated fields when you create the new tables. This lets you further denormalize your model and take direct advantage BigQuery underlying columnar representation of data.
A benefit of facade views is that your downstream processes can continue their transformation independently from these underlying schema changes and independently from changes in the upstream processes.
Fully evolve your use case.
Finally, you can transform the remaining upstream and downstream processes. When all of these are evolved to write into the new tables and to read from the new facade views, you modify the query definitions of the facade views to not read from the source schema anymore. You can then retire the tables in the source model from the data flow. The following diagram shows the state where source tables are no longer used.
If the facade views don't aggregate fields or filter columns, you can configure your downstream processes to read from the evolved tables and then retire the facade views to reduce complexity, as shown in the following diagram:
Perform an initial transfer of your schema and data
This section discusses practical considerations for migrating your schema and data from an existing data warehouse to BigQuery.
We recommend that you transfer the schema without any changes during initial iterations of the migration. This gives you the following advantages:
- The data pipelines that feed your data warehouse don't need to be adjusted for a new schema.
- You avoid adding a new schema to the list of training material for your staff.
- You can leverage automated tools to perform the schema and data transfer.
In addition, proofs of concept (PoCs) and other data exploration activities that leverage cloud capabilities can proceed unhindered, even while your migration occurs in parallel.
Choose a transfer method
You can make the initial transfer using one of several approaches.
- For Amazon Redshift and Teradata data warehouses, you can use BigQuery Data Transfer Service to load schema and data directly from your existing system into BigQuery. Cloud Storage is still used to stage data as part of the migration process.
- For any data warehouse, you can extract files that contain your schema and data, upload those files to Cloud Storage, and then use one of the following options to load the schema and data from those files into BigQuery:
For further considerations when choosing a data transfer method, see Choosing a data ingestion method.
Consider data transformation
Depending on your data extraction format and whether you want to trim or enrich your data before loading it into BigQuery, you might include a step to transform your data. You can transform the data in the existing environment or on Google Cloud:
- If you transform the data in the current environment, consider how the available compute capacity and tooling might limit throughput. In addition, if you are encriching the data during the transformation process, consider whether you need additional transfer time or network bandwidth.
- If you transform the data on Google Cloud, see Load data using an ETL tool for more information on your options.
Extract the existing schema and data into files
Your existing platform probably provides a tool to export data to a vendor-agnostic format like Apache AVRO or CSV. To reduce the transfer complexity, we recommend using AVRO, ORC or Parquet, where schema information is embedded with the data. If you choose CSV or a similar simple, delimited data format, you must specify the schema separately. How you do this depends on the data transfer method you select. For example, for batch upload, you can either specify a schema at load time or allow auto-detection of the schema based on the CSV file contents.
As you extract these files from your existing platform, copy them into staging storage in your existing environment.
Upload the files to Cloud Storage
Unless you are using BigQuery Data Transfer Service to load data directly from an existing Amazon Redshift or Teradata data warehouse, you must upload the extracted files to a bucket in Cloud Storage. Depending on the amount of data you're transferring and the network bandwidth available, you can choose from the following transfer options:
- If your extracted data is in another cloud provider, use Storage Transfer Service.
If the data is in an on-premises environment or in a colocation facility that has good network bandwidth, use the Google Cloud CLI. The gcloud CLI supports multi-threaded parallel uploads, it resumes after errors, and it encrypts the traffic in transit for security.
- If you can't use the gcloud CLI, you can try a third-party tool from a Google partner.
- If your network bandwidth is limited, you can use compression techniques to limit the size of the data, or you can modify your current connection to Google Cloud to increase the bandwidth.
If you cannot achieve sufficient network bandwidth, you can perform an offline transfer using a Transfer Appliance.
When you create the Cloud Storage bucket and are transferring data through the network, minimize network latency by choosing the location closest to your data center. If possible, choose the location of the bucket to be the same as the location of the BigQuery dataset.
For detailed information on best practices when moving data into Cloud Storage, including estimating costs, see Strategies for transferring big data sets.
Load the schema and data into BigQuery
Load the schema and data into BigQuery, using one of the options discussed in Choose a transfer method.
For more information on one-time loads, see Introduction to loading data from Cloud Storage in the BigQuery documentation. For more information on loads scheduled at regular intervals, see Overview of Cloud Storage transfers in the BigQuery Data Transfer Service documentation.
Load data using an ETL tool
If your data needs further transformation as it is loaded into BigQuery, use one of the following options:
- Cloud Data Fusion. This tool graphically builds fully managed ETL/ELT data pipelines using an open source library of preconfigured connectors and transformations.
- Dataflow. This tool defines and runs complex data transformations and enrichment graphs using the Apache Beam model. Dataflow is serverless and fully managed by Google, giving you access to virtually limitless processing capacity.
- Dataproc. This runs Apache Spark and Apache Hadoop cluster on a fully managed cloud service.
- Third-party tools. Contact one of our partners. They can provide effective choices when you want to externalize the building of a data pipeline.
The following diagram shows the pattern described in this section. The data transfer tool is the gcloud CLI, and there's a transformation step that leverages Dataflow and writes directly to BigQuery, perhaps using the Apache Beam built-in Google BigQuery I/O connector.
After you've loaded an initial set of your data into BigQuery, you can start taking advantage of BigQuery's powerful features.
However, as when you transferred your schema, uploading your data is part of an iterative process. Subsequent iterations can start by expanding the footprint of the data being transferred to BigQuery. Then you can reroute your upstream data feeds to BigQuery to eliminate the need for keeping your existing data warehouse running. These topics are explored in the next section.
Validate the data
Now that your data is in BigQuery, you can verify the success of your data transfer with the Data Validation Tool (DVT). DVT is an open source, Python CLI tool that allows you to compare data from various sources to your target in BigQuery. You can specify what aggregations you would like to run (for example, count, sum, average) and the columns that these should apply to. For more information, see Automate Data Validation with DVT.
Iterate on the initial transfer
This section discusses how to proceed after your initial data transfer in order to take best advantage of BigQuery.
A subset of your data is now in BigQuery. You're preparing to increase the footprint of the data being used in BigQuery, and therefore to reduce the dependency on your existing data warehouse.
The method you choose for subsequent iterations depends on how important it is for your use case to have data updated to the current second. If your data analysts can work with data that is incorporated into the data warehouse at recurrent intervals, a scheduled option is the way to go. You can create scheduled transfers in a manner similar to the initial transfer. You use the BigQuery Data Transfer Service, other ETL tools such as Google's Storage Transfer Service, or third-party implementations.
If you use BigQuery Data Transfer Service, first you decide which tables to move. Then you create a table name pattern to include those tables. Finally you set a recurrent schedule for when to run the transfer.
On the other hand, if your use case requires near-instant access to new data, you require a streaming approach. You have two options:
- Set up a load pipeline with Google Cloud products. Google provides a set of streaming Dataflow templates to facilitate this task.
- Use a solution from one of our partners.
In the short term, increasing the footprint of your BigQuery data and of using it for downstream process should be focused on satisfying your top-priority use cases, with the medium-term goal of moving off your existing data warehouse. Use the initial iterations wisely and don't spend a lot of resources perfecting the ingestion pipelines from your existing data warehouse into BigQuery. Ultimately, you'll need to adapt those pipelines not to use the existing data warehouse.
Optimize the schema
Simply migrating your tables as-is to BigQuery allows you to take advantage of its unique features. For instance, there is no need for rebuilding indexes, reshuffling data blocks (vacuuming) or any downtime or performance degradation because of version upgrades.
However, keeping the data warehouse model intact beyond the initial iterations of the migration also has disadvantages:
- Existing issues and technical debt associated with the schema remain.
- Query optimizations are limited, and they might need to be redone if the schema is updated at a later stage.
- You don't take full advantage of other BigQuery features, such as nested and repeated fields, partitioning, and clustering.
As you move towards doing a final transfer, we recommend that you improve system performance by applying partitioning and clustering to the tables you create in your schema.
Partitioning
BigQuery lets you divide your data into segments, called
partitions,
that make it easier and more efficient to manage and query your data. You can
partition your tables based on a
TIMESTAMP
or
DATE
column, or BigQuery can add pseudocolumns to automatically
partition your data during ingestion. Queries that involve smaller partitions
can be more performant because they scan only a subset of the data, and can
reduce costs by minimizing the number of bytes being read.
Partitioning does not impact the existing structure of your tables. Therefore, you should consider creating partitioned tables even if your schema is not modified.
Clustering
In BigQuery, no indexes are used to query your data. BigQuery's performance is optimized by its underlying model, storage and query techniques, and massively parallel architecture. When you run a query, the more data is being processed, the more machines are added to scan data and aggregate results concurrently. This technique scales well to huge datasets, whereas rebuilding indexes does not.
Nevertheless, there is room for further query optimization with techniques like clustering. With clustering, BigQuery automatically sorts your data based on the values of a few columns that you specify and colocates them in optimally sized blocks. Clustering improves query performance compared to not using clustering. With clustering, BigQuery can better estimate the cost of running the query than without clustering. With clustered columns, queries also eliminate scans of unnecessary data, and can calculate aggregates quicker because the blocks colocate records with similar values.
Examine your queries for columns frequently used for filtering and create your tables with clustering on those columns. For more information about clustering, see Introduction to clustered tables.
Denormalization
Data migration is an iterative process. Therefore, once you've moved your initial schema to the cloud, performed light optimizations, and tested a few key use cases, it might be time to explore additional capabilities that benefit from the underlying design of BigQuery. These include nested and repeated fields.
Data warehouse schemas have historically used the following models:
- Star schema. This is a denormalized model, where a fact table collects metrics such as order amount, discount, and quantity, along with a group of keys. These keys belong to dimension tables such as customer, supplier, region, and so on. Graphically, the model resembles a star, with the fact table in the center surrounded by dimension tables.
- Snowflake schema. This is similar to the star schema, but with its dimension tables normalized, which gives the schema the appearance of a unique snowflake.
BigQuery supports both star and snowflake schemas, but its native schema representation is neither of those two. It uses nested and repeated fields instead for a more natural representation of the data. For more information, see the example schema in the BigQuery documentation.
Changing your schema to use nested and repeated fields is an excellent evolutionary choice. It reduces the number of joins required for your queries, and it aligns your schema with the BigQuery internal data representation. Internally, BigQuery organizes data using the Dremel model and stores it in a columnar storage format called Capacitor.
To decide the best denormalization approach for your case, consider the best practices for denormalization in BigQuery as well as the techniques for handling schema changes.
What's next
Learn more about the following steps in data warehouse migration:
- Migration overview
- Migration assessment
- Data pipelines
- Batch SQL translation
- Interactive SQL translation
- Data security and governance
- Data validation tool
You can also learn about moving from specific data warehouse technologies to BigQuery:
- Migrating from Netezza
- Migrating from Oracle
- Migrating from Amazon Redshift
- Migrating from Teradata
- Migrating from Snowflake