Restez organisé à l'aide des collections
Enregistrez et classez les contenus selon vos préférences.
Créer une version spécifique d'une instance
Cette page explique comment créer une version spécifique d'une instance Vertex AI Workbench.
Les raisons de créer une version spécifique
Pour vous assurer que votre instance Vertex AI Workbench dispose d'un logiciel compatible avec votre code ou votre application, vous pouvez créer une version spécifique.
Les images d'instance Vertex AI Workbench sont fréquemment mises à jour, et les versions de logiciels et de packages préinstallés varient d'une version à l'autre.
Pour en savoir plus sur des versions spécifiques de Vertex AI Workbench, consultez les notes de version de Vertex AI.
Après avoir créé une version spécifique d'une instance Vertex AI Workbench, vous pouvez la mettre à niveau.
La mise à niveau de l'instance met à jour les logiciels et packages préinstallés.
Pour en savoir plus, consultez Mettre à niveau l'environnement d'une instance.
Avant de commencer
Sign in to your Google Cloud account. If you're new to
Google Cloud,
create an account to evaluate how our products perform in
real-world scenarios. New customers also get $300 in free credits to
run, test, and deploy workloads.
In the Google Cloud console, on the project selector page,
select or create a Google Cloud project.
Vous pouvez créer une version spécifique d'une instance Vertex AI Workbench à l'aide de la console Google Cloud ou de Google Cloud CLI.
Console
Pour créer une version spécifique d'une instance Vertex AI Workbench, procédez comme suit :
Lorsque vous créez une instance, dans la section Environnement, sélectionnez Utiliser une version précédente.
Cliquez sur la liste Version, puis sélectionnez une version. Les versions sont numérotées sous la forme d'un élément M suivi du numéro de la version, par exemple, M123.
Renseignez le reste de la boîte de dialogue de création d'instance, puis cliquez sur Créer.
Vertex AI Workbench crée une instance et la démarre automatiquement.
Lorsque l'instance est prête à l'emploi, Vertex AI Workbench active automatiquement un lien Ouvrir JupyterLab.
gcloud
Avant d'utiliser les données de la commande ci-dessous, effectuez les remplacements suivants :
INSTANCE_NAME : nom de votre instance Vertex AI Workbench. Ce nom doit commencer par une lettre, suivie de 62 caractères (lettres minuscules, chiffres ou traits d'union (-)), et ne peut pas se terminer par un trait d'union.
PROJECT_ID : ID de votre projet.
LOCATION : zone dans laquelle vous souhaitez placer votre instance.
VM_IMAGE_NAME : nom de l'image. Pour obtenir la liste des noms d'image disponibles, utilisez la commande get-config.
METADATA : métadonnées personnalisées à appliquer à cette instance. Par exemple, pour spécifier un script post-démarrage, vous pouvez utiliser le tag de métadonnées post-startup-script au format --metadata=post-startup-script=gs://BUCKET_NAME/hello.sh.
Pour en savoir plus sur la commande permettant de créer une instance à partir de la ligne de commande, consultez la documentation de la gcloud CLI.
Vertex AI Workbench crée une instance et la démarre automatiquement.
Lorsque l'instance est prête à l'emploi, Vertex AI Workbench active un lien Ouvrir JupyterLab dans la console Google Cloud .
Sauf indication contraire, le contenu de cette page est régi par une licence Creative Commons Attribution 4.0, et les échantillons de code sont régis par une licence Apache 2.0. Pour en savoir plus, consultez les Règles du site Google Developers. Java est une marque déposée d'Oracle et/ou de ses sociétés affiliées.
Dernière mise à jour le 2025/09/04 (UTC).
[[["Facile à comprendre","easyToUnderstand","thumb-up"],["J'ai pu résoudre mon problème","solvedMyProblem","thumb-up"],["Autre","otherUp","thumb-up"]],[["Difficile à comprendre","hardToUnderstand","thumb-down"],["Informations ou exemple de code incorrects","incorrectInformationOrSampleCode","thumb-down"],["Il n'y a pas l'information/les exemples dont j'ai besoin","missingTheInformationSamplesINeed","thumb-down"],["Problème de traduction","translationIssue","thumb-down"],["Autre","otherDown","thumb-down"]],["Dernière mise à jour le 2025/09/04 (UTC)."],[],[],null,["# Create a specific version of a Vertex AI Workbench instance\n\nCreate a specific version of an instance\n========================================\n\nThis page describes how to create a specific version of a\nVertex AI Workbench instance.\n\nWhy you might want to create a specific version\n-----------------------------------------------\n\nTo ensure that your Vertex AI Workbench instance has software\nthat is compatible with your code or application, you might want to create\na specific version.\n\nVertex AI Workbench instance images are updated frequently, and\nspecific versions of preinstalled software and packages vary from version\nto version.\n\nTo learn more about specific Vertex AI Workbench versions,\nsee the [Vertex AI release notes](/vertex-ai/docs/release-notes).\n\nAfter you create a specific version of\na Vertex AI Workbench instance, you can upgrade it.\nUpgrading the instance updates the preinstalled software and packages.\nFor more information,\nsee [Upgrade an instance's environment](/vertex-ai/docs/workbench/instances/upgrade).\n\nBefore you begin\n----------------\n\n- Sign in to your Google Cloud account. If you're new to Google Cloud, [create an account](https://console.cloud.google.com/freetrial) to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.\n- In the Google Cloud console, on the project selector page,\n select or create a Google Cloud project.\n\n | **Note**: If you don't plan to keep the resources that you create in this procedure, create a project instead of selecting an existing project. After you finish these steps, you can delete the project, removing all resources associated with the project.\n\n [Go to project selector](https://console.cloud.google.com/projectselector2/home/dashboard)\n-\n [Verify that billing is enabled for your Google Cloud project](/billing/docs/how-to/verify-billing-enabled#confirm_billing_is_enabled_on_a_project).\n\n-\n\n\n Enable the Notebooks API.\n\n\n [Enable the API](https://console.cloud.google.com/flows/enableapi?apiid=notebooks.googleapis.com&redirect=https://console.cloud.google.com)\n\n- In the Google Cloud console, on the project selector page,\n select or create a Google Cloud project.\n\n | **Note**: If you don't plan to keep the resources that you create in this procedure, create a project instead of selecting an existing project. After you finish these steps, you can delete the project, removing all resources associated with the project.\n\n [Go to project selector](https://console.cloud.google.com/projectselector2/home/dashboard)\n-\n [Verify that billing is enabled for your Google Cloud project](/billing/docs/how-to/verify-billing-enabled#confirm_billing_is_enabled_on_a_project).\n\n-\n\n\n Enable the Notebooks API.\n\n\n [Enable the API](https://console.cloud.google.com/flows/enableapi?apiid=notebooks.googleapis.com&redirect=https://console.cloud.google.com)\n\n\u003cbr /\u003e\n\nCreate a specific version\n-------------------------\n\nYou can create a specific version of a Vertex AI Workbench instance\nby using the Google Cloud console or the Google Cloud CLI. \n\n### Console\n\nTo create a specific version of a Vertex AI Workbench instance,\ndo the following:\n\n1. When you [create an instance](/vertex-ai/docs/workbench/instances/create),\n in the **Environment** section, select **Use a previous version**.\n\n2. Click the **Version** list, and select a version. Versions are numbered\n in the form of an `M` followed by the number of the release,\n for example, `M123`.\n\n3. Complete the rest of the instance-creation dialog, and then\n click **Create**.\n\n Vertex AI Workbench creates an instance and automatically starts it.\n When the instance is ready to use, Vertex AI Workbench\n activates an **Open JupyterLab** link.\n\n### gcloud\n\n\nBefore using any of the command data below,\nmake the following replacements:\n\n- \u003cvar translate=\"no\"\u003eINSTANCE_NAME\u003c/var\u003e: the name of your Vertex AI Workbench instance; must start with a letter followed by up to 62 lowercase letters, numbers, or hyphens (-), and cannot end with a hyphen\n- \u003cvar translate=\"no\"\u003ePROJECT_ID\u003c/var\u003e: your project ID\n- \u003cvar translate=\"no\"\u003eLOCATION\u003c/var\u003e: the zone where you want your instance to be located\n- \u003cvar translate=\"no\"\u003eVM_IMAGE_NAME\u003c/var\u003e: the image name; to get a list of the available image names, use the [`get-config`\n command](/sdk/gcloud/reference/workbench/instances/get-config)\n- \u003cvar translate=\"no\"\u003eMACHINE_TYPE\u003c/var\u003e: the [machine type](/compute/docs/machine-resource) of your instance's VM\n- \u003cvar translate=\"no\"\u003eMETADATA\u003c/var\u003e: custom metadata to apply to this instance;\n for example, to specify a post-startup-script,\n you can use the `post-startup-script` metadata tag, in the format:\n `--metadata=post-startup-script=gs://`\u003cvar translate=\"no\"\u003eBUCKET_NAME\u003c/var\u003e`/hello.sh`\n\n | To enable the JupyterLab 4 preview, use `--metadata=enable-jupyterlab4-preview=true`. For more information, see [JupyterLab 4 preview](/vertex-ai/docs/workbench/instances/create#jupyterlab-preview).\n\n\nExecute the\n\nfollowing\n\ncommand:\n\n#### Linux, macOS, or Cloud Shell\n\n**Note:** Ensure you have initialized the Google Cloud CLI with authentication and a project by running either [gcloud init](/sdk/gcloud/reference/init); or [gcloud auth login](/sdk/gcloud/reference/auth/login) and [gcloud config set project](/sdk/gcloud/reference/config/set). \n\n```bash\ngcloud workbench instances create INSTANCE_NAME \\\n --project=PROJECT_ID \\\n --location=LOCATION \\\n --vm-image-project=\"cloud-notebooks-managed\" \\\n --vm-image-name=VM_IMAGE_NAME \\\n --machine-type=MACHINE_TYPE \\\n --metadata=METADATA\n```\n\n#### Windows (PowerShell)\n\n**Note:** Ensure you have initialized the Google Cloud CLI with authentication and a project by running either [gcloud init](/sdk/gcloud/reference/init); or [gcloud auth login](/sdk/gcloud/reference/auth/login) and [gcloud config set project](/sdk/gcloud/reference/config/set). \n\n```bash\ngcloud workbench instances create INSTANCE_NAME `\n --project=PROJECT_ID `\n --location=LOCATION `\n --vm-image-project=\"cloud-notebooks-managed\" `\n --vm-image-name=VM_IMAGE_NAME `\n --machine-type=MACHINE_TYPE `\n --metadata=METADATA\n```\n\n#### Windows (cmd.exe)\n\n**Note:** Ensure you have initialized the Google Cloud CLI with authentication and a project by running either [gcloud init](/sdk/gcloud/reference/init); or [gcloud auth login](/sdk/gcloud/reference/auth/login) and [gcloud config set project](/sdk/gcloud/reference/config/set). \n\n```bash\ngcloud workbench instances create INSTANCE_NAME ^\n --project=PROJECT_ID ^\n --location=LOCATION ^\n --vm-image-project=\"cloud-notebooks-managed\" ^\n --vm-image-name=VM_IMAGE_NAME ^\n --machine-type=MACHINE_TYPE ^\n --metadata=METADATA\n```\n\n\u003cbr /\u003e\n\nFor more information about the command for creating an\ninstance from the command line, see the [gcloud CLI\ndocumentation](/sdk/gcloud/reference/workbench/instances/create).\n\nVertex AI Workbench creates an instance and automatically starts it.\nWhen the instance is ready to use, Vertex AI Workbench\nactivates an **Open JupyterLab** link in the Google Cloud console.\n\nWhat's next\n-----------\n\n- Learn more about [upgrading\n Vertex AI Workbench instances](/vertex-ai/docs/workbench/instances/upgrade)\n to ensure that your instance upgrades only when you are ready.\n\n- Learn about [monitoring the health status](/vertex-ai/docs/workbench/instances/monitor-health) of\n your Vertex AI Workbench instance."]]