이 튜토리얼에서는 Google Cloud 콘솔의 테이블 형식 데이터 모델을 학습시키고 예측을 수행하는 데 필요한 단계를 설명합니다.
Python용 Vertex AI SDK를 사용하려는 경우 클라이언트를 초기화하는 서비스 계정에 Vertex AI 서비스 에이전트(roles/aiplatform.serviceAgent) IAM 역할이 있는지 확인합니다.
튜토리얼의 이 부분에서는 AutoML 모델을 학습시키는 데 필요한 문서가 포함된 Vertex AI 및 Cloud Storage 버킷을 사용하도록 Google Cloud 프로젝트를 설정합니다.
프로젝트 및 환경 설정
In the Google Cloud console, go to the project selector page.
USER_IDENTIFIER: the identifier for your user
account—for example, myemail@example.com.
ROLE: the IAM role that you grant to your user account.
Vertex AI 사용자(roles/aiplatform.user) IAM 역할은 Vertex AI의 모든 리소스를 사용할 수 있는 액세스 권한을 제공합니다. 스토리지 관리자(roles/storage.admin) 역할을 통해 Cloud Storage에 문서의 학습 데이터 세트를 저장할 수 있습니다.
다음 단계
이 가이드의 다음 페이지 설명에 따라 테이블 형식의 데이터 세트를 만들고 분류 모델을 학습시킵니다.
[[["이해하기 쉬움","easyToUnderstand","thumb-up"],["문제가 해결됨","solvedMyProblem","thumb-up"],["기타","otherUp","thumb-up"]],[["이해하기 어려움","hardToUnderstand","thumb-down"],["잘못된 정보 또는 샘플 코드","incorrectInformationOrSampleCode","thumb-down"],["필요한 정보/샘플이 없음","missingTheInformationSamplesINeed","thumb-down"],["번역 문제","translationIssue","thumb-down"],["기타","otherDown","thumb-down"]],["최종 업데이트: 2025-09-08(UTC)"],[],[],null,["# Hello tabular data: Set up your project and environment\n\nThis tutorial walks you through the required steps to train and get predictions\nfrom your tabular data model in the Google Cloud console.\nIf you plan to use the Vertex AI SDK for Python, make sure that the service account\ninitializing the client has the\n[Vertex AI Service Agent](/vertex-ai/docs/general/access-control#aiplatform.serviceAgent)\n(`roles/aiplatform.serviceAgent`) IAM role.\n\nFor this part of the tutorial, you set up your Google Cloud project to use\nVertex AI and a Cloud Storage bucket that contains the documents\nfor training your AutoML model.\n\nSet up your project and environment\n-----------------------------------\n\n1. In the Google Cloud console, go to the project selector page.\n\n [Go to project selector](https://console.cloud.google.com/projectselector2/home/dashboard)\n2. Select or create a Google Cloud project.\n\n | **Note**: If you don't plan to keep the resources that you create in this procedure, create a project instead of selecting an existing project. After you finish these steps, you can delete the project, removing all resources associated with the project.\n3.\n [Verify that billing is enabled for your Google Cloud project](/billing/docs/how-to/verify-billing-enabled#confirm_billing_is_enabled_on_a_project).\n\n4. Open [Cloud Shell](/shell/docs/launching-cloud-shell-editor). Cloud Shell is an interactive shell environment for Google Cloud that lets you manage your projects and resources from your web browser.\n[Go to Cloud Shell](https://ssh.cloud.google.com/cloudshell/editor)\n5. In the Cloud Shell, set the current project to your Google Cloud project ID and store it in the `projectid` shell variable: \n\n ```\n gcloud config set project PROJECT_ID &&\n projectid=PROJECT_ID &&\n echo $projectid\n ```\n Replace \u003cvar translate=\"no\"\u003ePROJECT_ID\u003c/var\u003e with your project ID. You can locate your project ID in the Google Cloud console. For more information, see [Find your project ID](/vertex-ai/docs/tutorials/tabular-bq-prediction/prerequisites#find-project-id).\n6.\n\n\n Enable the IAM, Compute Engine, Notebooks, Cloud Storage, and Vertex AI APIs.\n\n\n [Enable the APIs](https://console.cloud.google.com/flows/enableapi?apiid=iam.googleapis.com, compute.googleapis.com,notebooks.googleapis.com storage.googleapis.com aiplatform.googleapis.com)\n7. \n8.\n\n Make sure that you have the following role or roles on the project:\n\n roles/aiplatform.user, roles/storage.admin\n\n #### Check for the roles\n\n 1.\n In the Google Cloud console, go to the **IAM** page.\n\n [Go to IAM](https://console.cloud.google.com/projectselector/iam-admin/iam?supportedpurview=project)\n 2. Select the project.\n 3.\n In the **Principal** column, find all rows that identify you or a group that\n you're included in. To learn which groups you're included in, contact your\n administrator.\n\n 4. For all rows that specify or include you, check the **Role** column to see whether the list of roles includes the required roles.\n\n #### Grant the roles\n\n 1.\n In the Google Cloud console, go to the **IAM** page.\n\n [Go to IAM](https://console.cloud.google.com/projectselector/iam-admin/iam?supportedpurview=project)\n 2. Select the project.\n 3. Click person_add **Grant access**.\n 4.\n In the **New principals** field, enter your user identifier.\n\n This is typically the email address for a Google Account.\n\n 5. In the **Select a role** list, select a role.\n 6. To grant additional roles, click add **Add\n another role** and add each additional role.\n 7. Click **Save**.\n9. The Vertex AI User (`roles/aiplatform.user`) IAM role provides access to use all resources in Vertex AI. The [Storage Admin](/storage/docs/access-control/iam-roles) (`roles/storage.admin`) role lets you store the document's training dataset in Cloud Storage.\n\n\u003cbr /\u003e\n\nWhat's next\n-----------\n\nFollow the [next page of this tutorial](/vertex-ai/docs/tutorials/tabular-automl/dataset-train) to\ncreate a tabular dataset and train a classification model."]]