Dados da imagem do Hello: configurar o projeto e o ambiente

Se você planeja usar o SDK da Vertex AI para Python, verifique se a conta de serviço que inicializa o cliente tem o papel do IAM do Agente de serviço da Vertex AI (roles/aiplatform.serviceAgent).

Você vai configurar seu projeto do Google Cloud para usar a Vertex AI. Em seguida, crie um bucket do Cloud Storage e copie os arquivos de imagem para usar no treinamento de um modelo de classificação de imagens do AutoML.

Este tutorial tem várias páginas:

  1. Configurr o projeto e o ambiente.

  2. Criar um conjunto de dados de classificação de imagens e importar imagens.

  3. Treinar um modelo de classificação de imagens do AutoML.

  4. Avaliar e analisar o desempenho do modelo.

  5. Implantar um modelo em um endpoint e enviar uma previsão.

  6. Limpar o projeto.

Cada página pressupõe que você já tenha realizado as instruções das páginas anteriores do tutorial.

Antes de começar

Conclua as etapas a seguir antes de usar a funcionalidade da Vertex AI.

  1. In the Google Cloud console, go to the project selector page.

    Go to project selector

  2. Select or create a Google Cloud project.

  3. Verifique se a cobrança está ativada para o seu projeto do Google Cloud.

  4. Abra o Cloud Shell. O Cloud Shell é um ambiente shell interativo para o Google Cloud que permite gerenciar projetos e recursos a partir do navegador da Web.
  5. Acesse o Cloud Shell
  6. No Cloud Shell, defina o projeto atual como o ID do projeto do Google Cloud e armazene-o na variável de shell projectid:
      gcloud config set project PROJECT_ID &&
      projectid=PROJECT_ID &&
      echo $projectid
    Substitua PROJECT_ID pelo ID do projeto. Localize o ID do projeto no console do Google Cloud. Para mais informações, consulte Encontrar o ID do projeto.
  7. Enable the IAM, Compute Engine, Notebooks, Cloud Storage, and Vertex AI APIs:

    gcloud services enable iam.googleapis.com  compute.googleapis.com notebooks.googleapis.com storage.googleapis.com aiplatform.googleapis.com
  8. Grant roles to your user account. Run the following command once for each of the following IAM roles: roles/aiplatform.user, roles/storage.admin

    gcloud projects add-iam-policy-binding PROJECT_ID --member="USER_IDENTIFIER" --role=ROLE
    • Replace PROJECT_ID with your project ID.
    • Replace USER_IDENTIFIER with the identifier for your user account. For example, user:myemail@example.com.

    • Replace ROLE with each individual role.
  9. O papel do IAM do usuário da Vertex AI (roles/aiplatform.user) do IAM fornece acesso para usar todos os recursos na Vertex AI. Com o papel Administrador do Storage (roles/storage.admin), você armazena o conjunto de dados de treinamento do documento no Cloud Storage.

A seguir

Siga a próxima página deste tutorial para usar o console do Google Cloud para criar um conjunto de dados de classificação de imagens e importar imagens hospedadas em um bucket público do Cloud Storage.