Treinar um modelo de classificação de texto

.

Nesta página, mostramos como treinar um modelo de previsão do AutoML em um conjunto de dados tabular usando o Console do Google Cloud ou a API Vertex AI.

Treinar um modelo do AutoML

Console do Google Cloud

  1. No Console do Google Cloud, na seção da Vertex AI, acesse a página Conjuntos de dados.

    Acessar a página "Conjuntos de dados"

  2. Clique no nome do conjunto de dados que você quer usar para treinar seu modelo para abrir a página de detalhes.

  3. Clique em Treinar novo modelo.

  4. Para o método de treinamento, selecione o AutoML.

  5. Clique em Continuar.

  6. Dê um nome para o modelo.

  7. Se você quiser definir manualmente como os dados de treinamento são divididos, expanda as Opções avançadas e selecione uma opção de divisão de dados. Saiba mais.

  8. Clique em Iniciar treinamento.

    O treinamento do modelo pode levar muitas horas dependendo do tamanho e da complexidade dos dados, além do orçamento de treinamento, se você tiver especificado um. Você pode fechar essa guia e voltar a ela mais tarde. Você receberá um e-mail quando o treinamento do seu modelo for concluído.

API

Selecione uma guia para seu idioma ou ambiente:

REST

Crie um objeto TrainingPipeline para treinar um modelo.

Antes de usar os dados da solicitação abaixo, faça as substituições a seguir:

  • LOCATION: a região em que o modelo será criado, como us-central1
  • PROJECT: o ID do projeto
  • MODEL_DISPLAY_NAME: nome do modelo como ele aparece na interface do usuário.
  • MULTI-LABEL: um valor booleano que indica se a Vertex AI (versão unificada) treina um modelo de vários rótulos; o padrão é false (modelo de rótulo único).
  • DATASET_ID: o ID do conjunto de dados.
  • PROJECT_NUMBER: o número do projeto gerado automaticamente

Método HTTP e URL:

POST https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/trainingPipelines

Corpo JSON da solicitação:

{
  "displayName": "MODEL_DISPLAY_NAME",
  "trainingTaskDefinition": "gs://google-cloud-aiplatform/schema/trainingjob/definition/automl_text_classification_1.0.0.yaml",
  "trainingTaskInputs": {
    "multiLabel": MULTI-LABEL
  },
  "modelToUpload": {
    "displayName": "MODEL_DISPLAY_NAME"
  },
  "inputDataConfig": {
    "datasetId": "DATASET_ID"
  }
}

Para enviar a solicitação, expanda uma destas opções:

Você receberá uma resposta JSON semelhante a esta:

{
  "name": "projects/PROJECT_NUMBER/locations/us-central1/trainingPipelines/PIPELINE_ID",
  "displayName": "MODEL_DISPLAY_NAME",
  "inputDataConfig": {
    "datasetId": "DATASET_ID"
  },
  "trainingTaskDefinition": "gs://google-cloud-aiplatform/schema/trainingjob/definition/automl_text_classification_1.0.0.yaml",
  "trainingTaskInputs": {
    "multiLabel": MULTI-LABEL
  },
  "modelToUpload": {
    "displayName": "MODEL_DISPLAY_NAME"
  },
  "state": "PIPELINE_STATE_PENDING",
  "createTime": "2020-04-18T01:22:57.479336Z",
  "updateTime": "2020-04-18T01:22:57.479336Z"
}

Java

Antes de testar esse exemplo, siga as instruções de configuração para Java no Guia de início rápido da Vertex AI sobre como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vertex AI para Java.

Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.


import com.google.cloud.aiplatform.util.ValueConverter;
import com.google.cloud.aiplatform.v1.DeployedModelRef;
import com.google.cloud.aiplatform.v1.EnvVar;
import com.google.cloud.aiplatform.v1.FilterSplit;
import com.google.cloud.aiplatform.v1.FractionSplit;
import com.google.cloud.aiplatform.v1.InputDataConfig;
import com.google.cloud.aiplatform.v1.LocationName;
import com.google.cloud.aiplatform.v1.Model;
import com.google.cloud.aiplatform.v1.Model.ExportFormat;
import com.google.cloud.aiplatform.v1.ModelContainerSpec;
import com.google.cloud.aiplatform.v1.PipelineServiceClient;
import com.google.cloud.aiplatform.v1.PipelineServiceSettings;
import com.google.cloud.aiplatform.v1.Port;
import com.google.cloud.aiplatform.v1.PredefinedSplit;
import com.google.cloud.aiplatform.v1.PredictSchemata;
import com.google.cloud.aiplatform.v1.TimestampSplit;
import com.google.cloud.aiplatform.v1.TrainingPipeline;
import com.google.cloud.aiplatform.v1.schema.trainingjob.definition.AutoMlTextClassificationInputs;
import com.google.rpc.Status;
import java.io.IOException;

public class CreateTrainingPipelineTextClassificationSample {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String trainingPipelineDisplayName = "YOUR_TRAINING_PIPELINE_DISPLAY_NAME";
    String project = "YOUR_PROJECT_ID";
    String datasetId = "YOUR_DATASET_ID";
    String modelDisplayName = "YOUR_MODEL_DISPLAY_NAME";

    createTrainingPipelineTextClassificationSample(
        project, trainingPipelineDisplayName, datasetId, modelDisplayName);
  }

  static void createTrainingPipelineTextClassificationSample(
      String project, String trainingPipelineDisplayName, String datasetId, String modelDisplayName)
      throws IOException {
    PipelineServiceSettings pipelineServiceSettings =
        PipelineServiceSettings.newBuilder()
            .setEndpoint("us-central1-aiplatform.googleapis.com:443")
            .build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (PipelineServiceClient pipelineServiceClient =
        PipelineServiceClient.create(pipelineServiceSettings)) {
      String location = "us-central1";
      String trainingTaskDefinition =
          "gs://google-cloud-aiplatform/schema/trainingjob/definition/"
              + "automl_text_classification_1.0.0.yaml";

      LocationName locationName = LocationName.of(project, location);

      AutoMlTextClassificationInputs trainingTaskInputs =
          AutoMlTextClassificationInputs.newBuilder().setMultiLabel(false).build();

      InputDataConfig trainingInputDataConfig =
          InputDataConfig.newBuilder().setDatasetId(datasetId).build();
      Model model = Model.newBuilder().setDisplayName(modelDisplayName).build();
      TrainingPipeline trainingPipeline =
          TrainingPipeline.newBuilder()
              .setDisplayName(trainingPipelineDisplayName)
              .setTrainingTaskDefinition(trainingTaskDefinition)
              .setTrainingTaskInputs(ValueConverter.toValue(trainingTaskInputs))
              .setInputDataConfig(trainingInputDataConfig)
              .setModelToUpload(model)
              .build();

      TrainingPipeline trainingPipelineResponse =
          pipelineServiceClient.createTrainingPipeline(locationName, trainingPipeline);

      System.out.println("Create Training Pipeline Text Classification Response");
      System.out.format("\tName: %s\n", trainingPipelineResponse.getName());
      System.out.format("\tDisplay Name: %s\n", trainingPipelineResponse.getDisplayName());

      System.out.format(
          "\tTraining Task Definition %s\n", trainingPipelineResponse.getTrainingTaskDefinition());
      System.out.format(
          "\tTraining Task Inputs: %s\n", trainingPipelineResponse.getTrainingTaskInputs());
      System.out.format(
          "\tTraining Task Metadata: %s\n", trainingPipelineResponse.getTrainingTaskMetadata());
      System.out.format("State: %s\n", trainingPipelineResponse.getState());

      System.out.format("\tCreate Time: %s\n", trainingPipelineResponse.getCreateTime());
      System.out.format("\tStartTime %s\n", trainingPipelineResponse.getStartTime());
      System.out.format("\tEnd Time: %s\n", trainingPipelineResponse.getEndTime());
      System.out.format("\tUpdate Time: %s\n", trainingPipelineResponse.getUpdateTime());
      System.out.format("\tLabels: %s\n", trainingPipelineResponse.getLabelsMap());

      InputDataConfig inputDataConfig = trainingPipelineResponse.getInputDataConfig();
      System.out.println("\tInput Data Config");
      System.out.format("\t\tDataset Id: %s", inputDataConfig.getDatasetId());
      System.out.format("\t\tAnnotations Filter: %s\n", inputDataConfig.getAnnotationsFilter());

      FractionSplit fractionSplit = inputDataConfig.getFractionSplit();
      System.out.println("\t\tFraction Split");
      System.out.format("\t\t\tTraining Fraction: %s\n", fractionSplit.getTrainingFraction());
      System.out.format("\t\t\tValidation Fraction: %s\n", fractionSplit.getValidationFraction());
      System.out.format("\t\t\tTest Fraction: %s\n", fractionSplit.getTestFraction());

      FilterSplit filterSplit = inputDataConfig.getFilterSplit();
      System.out.println("\t\tFilter Split");
      System.out.format("\t\t\tTraining Filter: %s\n", filterSplit.getTrainingFilter());
      System.out.format("\t\t\tValidation Filter: %s\n", filterSplit.getValidationFilter());
      System.out.format("\t\t\tTest Filter: %s\n", filterSplit.getTestFilter());

      PredefinedSplit predefinedSplit = inputDataConfig.getPredefinedSplit();
      System.out.println("\t\tPredefined Split");
      System.out.format("\t\t\tKey: %s\n", predefinedSplit.getKey());

      TimestampSplit timestampSplit = inputDataConfig.getTimestampSplit();
      System.out.println("\t\tTimestamp Split");
      System.out.format("\t\t\tTraining Fraction: %s\n", timestampSplit.getTrainingFraction());
      System.out.format("\t\t\tValidation Fraction: %s\n", timestampSplit.getValidationFraction());
      System.out.format("\t\t\tTest Fraction: %s\n", timestampSplit.getTestFraction());
      System.out.format("\t\t\tKey: %s\n", timestampSplit.getKey());

      Model modelResponse = trainingPipelineResponse.getModelToUpload();
      System.out.println("\tModel To Upload");
      System.out.format("\t\tName: %s\n", modelResponse.getName());
      System.out.format("\t\tDisplay Name: %s\n", modelResponse.getDisplayName());
      System.out.format("\t\tDescription: %s\n", modelResponse.getDescription());

      System.out.format("\t\tMetadata Schema Uri: %s\n", modelResponse.getMetadataSchemaUri());
      System.out.format("\t\tMetadata: %s\n", modelResponse.getMetadata());
      System.out.format("\t\tTraining Pipeline: %s\n", modelResponse.getTrainingPipeline());
      System.out.format("\t\tArtifact Uri: %s\n", modelResponse.getArtifactUri());

      System.out.format(
          "\t\tSupported Deployment Resources Types: %s\n",
          modelResponse.getSupportedDeploymentResourcesTypesList());
      System.out.format(
          "\t\tSupported Input Storage Formats: %s\n",
          modelResponse.getSupportedInputStorageFormatsList());
      System.out.format(
          "\t\tSupported Output Storage Formats: %s\n",
          modelResponse.getSupportedOutputStorageFormatsList());

      System.out.format("\t\tCreate Time: %s\n", modelResponse.getCreateTime());
      System.out.format("\t\tUpdate Time: %s\n", modelResponse.getUpdateTime());
      System.out.format("\t\tLabels: %sn\n", modelResponse.getLabelsMap());

      PredictSchemata predictSchemata = modelResponse.getPredictSchemata();
      System.out.println("\t\tPredict Schemata");
      System.out.format("\t\t\tInstance Schema Uri: %s\n", predictSchemata.getInstanceSchemaUri());
      System.out.format(
          "\t\t\tParameters Schema Uri: %s\n", predictSchemata.getParametersSchemaUri());
      System.out.format(
          "\t\t\tPrediction Schema Uri: %s\n", predictSchemata.getPredictionSchemaUri());

      for (ExportFormat exportFormat : modelResponse.getSupportedExportFormatsList()) {
        System.out.println("\t\tSupported Export Format");
        System.out.format("\t\t\tId: %s\n", exportFormat.getId());
      }

      ModelContainerSpec modelContainerSpec = modelResponse.getContainerSpec();
      System.out.println("\t\tContainer Spec");
      System.out.format("\t\t\tImage Uri: %s\n", modelContainerSpec.getImageUri());
      System.out.format("\t\t\tCommand: %s\n", modelContainerSpec.getCommandList());
      System.out.format("\t\t\tArgs: %s\n", modelContainerSpec.getArgsList());
      System.out.format("\t\t\tPredict Route: %s\n", modelContainerSpec.getPredictRoute());
      System.out.format("\t\t\tHealth Route: %s\n", modelContainerSpec.getHealthRoute());

      for (EnvVar envVar : modelContainerSpec.getEnvList()) {
        System.out.println("\t\t\tEnv");
        System.out.format("\t\t\t\tName: %s\n", envVar.getName());
        System.out.format("\t\t\t\tValue: %s\n", envVar.getValue());
      }

      for (Port port : modelContainerSpec.getPortsList()) {
        System.out.println("\t\t\tPort");
        System.out.format("\t\t\t\tContainer Port: %s\n", port.getContainerPort());
      }

      for (DeployedModelRef deployedModelRef : modelResponse.getDeployedModelsList()) {
        System.out.println("\t\tDeployed Model");
        System.out.format("\t\t\tEndpoint: %s\n", deployedModelRef.getEndpoint());
        System.out.format("\t\t\tDeployed Model Id: %s\n", deployedModelRef.getDeployedModelId());
      }

      Status status = trainingPipelineResponse.getError();
      System.out.println("\tError");
      System.out.format("\t\tCode: %s\n", status.getCode());
      System.out.format("\t\tMessage: %s\n", status.getMessage());
    }
  }
}

Node.js

Antes de testar essa amostra, siga as instruções de configuração para Node.js Guia de início rápido da Vertex AI: como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vertex AI para Node.js.

Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

/**
 * TODO(developer): Uncomment these variables before running the sample.\
 * (Not necessary if passing values as arguments)
 */

// const datasetId = 'YOUR_DATASET_ID';
// const modelDisplayName = 'YOUR_MODEL_DISPLAY_NAME';
// const trainingPipelineDisplayName = 'YOUR_TRAINING_PIPELINE_DISPLAY_NAME';
// const project = 'YOUR_PROJECT_ID';
// const location = 'YOUR_PROJECT_LOCATION';
const aiplatform = require('@google-cloud/aiplatform');
const {definition} =
  aiplatform.protos.google.cloud.aiplatform.v1.schema.trainingjob;

// Imports the Google Cloud Pipeline Service Client library
const {PipelineServiceClient} = aiplatform.v1;

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: 'us-central1-aiplatform.googleapis.com',
};

// Instantiates a client
const pipelineServiceClient = new PipelineServiceClient(clientOptions);

async function createTrainingPipelineTextClassification() {
  // Configure the parent resource
  const parent = `projects/${project}/locations/${location}`;

  const trainingTaskInputObj = new definition.AutoMlTextClassificationInputs({
    multiLabel: false,
  });
  const trainingTaskInputs = trainingTaskInputObj.toValue();

  const modelToUpload = {displayName: modelDisplayName};
  const inputDataConfig = {datasetId: datasetId};
  const trainingPipeline = {
    displayName: trainingPipelineDisplayName,
    trainingTaskDefinition:
      'gs://google-cloud-aiplatform/schema/trainingjob/definition/automl_text_classification_1.0.0.yaml',
    trainingTaskInputs,
    inputDataConfig,
    modelToUpload,
  };
  const request = {
    parent,
    trainingPipeline,
  };

  // Create training pipeline request
  const [response] =
    await pipelineServiceClient.createTrainingPipeline(request);

  console.log('Create training pipeline text classification response :');
  console.log(`Name : ${response.name}`);
  console.log('Raw response:');
  console.log(JSON.stringify(response, null, 2));
}
createTrainingPipelineTextClassification();

Python

Para saber como instalar o SDK da Vertex AI para Python, consulte Instalar o SDK da Vertex AI para Python. Para mais informações, consulte a documentação de referência da API Python.

def create_training_pipeline_text_classification_sample(
    project: str,
    location: str,
    display_name: str,
    dataset_id: str,
    model_display_name: Optional[str] = None,
    multi_label: bool = False,
    training_fraction_split: float = 0.8,
    validation_fraction_split: float = 0.1,
    test_fraction_split: float = 0.1,
    budget_milli_node_hours: int = 8000,
    disable_early_stopping: bool = False,
    sync: bool = True,
):
    aiplatform.init(project=project, location=location)

    job = aiplatform.AutoMLTextTrainingJob(
        display_name=display_name,
        prediction_type="classification",
        multi_label=multi_label,
    )

    text_dataset = aiplatform.TextDataset(dataset_id)

    model = job.run(
        dataset=text_dataset,
        model_display_name=model_display_name,
        training_fraction_split=training_fraction_split,
        validation_fraction_split=validation_fraction_split,
        test_fraction_split=test_fraction_split,
        budget_milli_node_hours=budget_milli_node_hours,
        disable_early_stopping=disable_early_stopping,
        sync=sync,
    )

    model.wait()

    print(model.display_name)
    print(model.resource_name)
    print(model.uri)
    return model

Controlar a divisão de dados usando REST

É possível controlar como os dados de treinamento são divididos entre os conjuntos de treinamento, validação e teste. Ao usar a API Vertex AI, use o Splitobjeto para determinar a divisão de dados. O objeto Split pode ser incluído no objeto InputConfig como um dos vários tipos de objeto, cada um fornecendo uma maneira diferente de dividir os dados de treinamento. É possível selecionar apenas um método.

  • FractionSplit:
    • TRAINING_FRACTION: a fração dos dados de treinamento a ser usada para o conjunto de treinamento.
    • VALIDATION_FRACTION: a fração dos dados de treinamento a ser usada para o conjunto de validação. Não usada para dados de vídeo.
    • TEST_FRACTION: a fração dos dados de treinamento a ser usada para o conjunto de teste.

    Se alguma das frações for especificada, tudo deverá ser especificado. As frações precisam ser adicionadas a 1,0. Os valores padrão das frações variam de acordo com o tipo de dados. Saiba mais.

    "fractionSplit": {
      "trainingFraction": TRAINING_FRACTION,
      "validationFraction": VALIDATION_FRACTION,
      "testFraction": TEST_FRACTION
    },
    
  • FilterSplit:
    • TRAINING_FILTER: itens de dados que correspondem a esse filtro são usados no conjunto de treinamento.
    • VALIDATION_FILTER: os itens de dados que correspondem a esse filtro são usados no conjunto de validação. Precisa ser "-" para dados de vídeo.
    • TEST_FILTER: os itens de dados que correspondem a esse filtro são usados no conjunto de teste.

    Esses filtros podem ser usados com o rótulo ml_use ou com qualquer rótulo aplicado aos seus dados. Saiba mais sobre como usar o rótulo ml-use label e outros rótulos para filtrar os dados.

    O exemplo a seguir mostra como usar o objeto filterSplit com o rótulo ml_use, com o conjunto de validação incluído:

    "filterSplit": {
    "trainingFilter": "labels.aiplatform.googleapis.com/ml_use=training",
    "validationFilter": "labels.aiplatform.googleapis.com/ml_use=validation",
    "testFilter": "labels.aiplatform.googleapis.com/ml_use=test"
    }