Descripción general de la clase del SDK de Vertex AI
Organiza tus páginas con colecciones
Guarda y categoriza el contenido según tus preferencias.
Los científicos de datos y los desarrolladores de aprendizaje automático (AA) usan el SDK de Vertex AI para Python a fin de compilar, entrenar e implementar modelos en un flujo de trabajo de AA personalizado. Esto incluye crear conjuntos de datos y subir datos, entrenar un modelo de AA, subir y almacenar tu modelo, implementar tu modelo, ejecutar trabajos de predicción por lotes y administrar tus modelos y extremos.
El SDK de Vertex AI también incluye clases para crear soluciones de IA generativa con modelos de base de incorporación de texto, código, chat y texto. Puedes
usar estas clases para generar texto, crear un chatbot de texto o código, ajustar un
modelo de base y crear una incorporación de texto. Una incorporación de texto es texto en forma de un vector que se usa para buscar elementos. Para obtener más información, consulta Introducción a las clases de modelo de lenguaje en el SDK de Vertex AI.
Puedes usar el SDK de Vertex AI para Python en un notebook alojado de JupyterLab dentro de Vertex AI a fin de escribir y ejecutar tu código. Los notebooks incluyen frameworks de AA preinstalados, como TensorFlow y PyTorch. También puedes usar otros notebooks, como notebooks de Colab, o usar un entorno de desarrollador que elijas que sea compatible con Python.
Si quieres intentar usar el SDK de Vertex AI para Python en este momento, consulta los siguientes recursos:
El SDK de Vertex AI incluye muchas clases para ayudarte a automatizar la transferencia de datos, entrenar modelos y obtener predicciones. También incluye clases para ayudarte a supervisar, evaluar y optimizar tu flujo de trabajo de aprendizaje automático (AA). Las clases se pueden agrupar de manera flexible en las siguientes categorías:
Las clases de datos incluyen clases que funcionan con datos estructurados, datos no estructurados y Vertex AI Feature Store.
Las clases de entrenamiento incluyen clases que funcionan con el entrenamiento de AutoML para datos estructurados y no estructurados, el entrenamiento personalizado, el entrenamiento de hiperparámetros y el entrenamiento de canalización.
Las clases de modelos funcionan con modelos y evaluaciones de modelos.
Las clases de predicción funcionan con predicciones por lotes, predicciones en línea y predicciones de Vector Search.
Las clases de seguimiento funcionan con Vertex ML Metadata, Vertex AI Experiments y Vertex AI TensorBoard.
[[["Fácil de comprender","easyToUnderstand","thumb-up"],["Resolvió mi problema","solvedMyProblem","thumb-up"],["Otro","otherUp","thumb-up"]],[["Difícil de entender","hardToUnderstand","thumb-down"],["Información o código de muestra incorrectos","incorrectInformationOrSampleCode","thumb-down"],["Faltan la información o los ejemplos que necesito","missingTheInformationSamplesINeed","thumb-down"],["Problema de traducción","translationIssue","thumb-down"],["Otro","otherDown","thumb-down"]],["Última actualización: 2025-08-25 (UTC)"],[],[],null,["# Vertex AI SDK class overview\n\nData scientists and machine learning (ML) developers use the Vertex AI SDK for Python to build, train, and deploy models in a custom ML workflow. This includes creating datasets and uploading data, training an ML model, uploading and storing your model, deploying your model, running batch prediction jobs, and managing your models and endpoints.\n\n\u003cbr /\u003e\n\nThe Vertex AI SDK also includes classes to create generative AI\nsolutions with text, code, chat, and text embedding foundation models. You can\nuse these classes to generate text, create a text or code chatbot, tune a\nfoundation model, and create a text embedding. A text embedding is text in the\nform of a vector used to search for items. For more information, see\n[Introduction to language model classes in the Vertex AI SDK](/vertex-ai/generative-ai/docs/sdk-for-llm/llm-sdk-overview).\n\nYou can use the Vertex AI SDK for Python in hosted JupyterLab notebooks within\nVertex AI to write and run your code. The notebooks include preinstalled\nML frameworks, such as TensorFlow and PyTorch. You can also use other notebooks,\nsuch as Colab notebooks, or use a developer environment of your choice that\nsupports Python.\n\nIf you want to try using the Vertex AI SDK for Python right now, see the following\nresources:\n\n- [Introduction to the Vertex AI SDK for Python](/vertex-ai/docs/python-sdk/use-vertex-ai-python-sdk)\n- [Vertex AI SDK reference](/python/docs/reference/aiplatform/latest/google.cloud.aiplatform)\n- [Vertex AI SDK language model reference](/python/docs/reference/aiplatform/latest/vertexai.language_models)\n- [Train a model using Vertex AI and the Python SDK](/vertex-ai/docs/tutorials/tabular-bq-prediction)\n\nThe Vertex AI SDK includes many classes to help you automate data\ningestion, train models, and get predictions. It also includes classes to help\nyou monitor, evaluate, and optimize your machine learning (ML) workflow. The\nclasses can be loosely grouped into the following categories:\n\n- [Data classes](/vertex-ai/docs/python-sdk/data-classes) include classes that work with structured data, unstructured data, and the Vertex AI Feature Store.\n- [Training classes](/vertex-ai/docs/python-sdk/training-classes) include classes that work with AutoML training for structured and unstructured data, custom training, hyperparameter training, and pipeline training.\n- [Model classes](/vertex-ai/docs/python-sdk/model-classes) work with models and model evaluations.\n- [Prediction classes](/vertex-ai/docs/python-sdk/prediction-classes) work with batch predictions, online predictions, and Vector Search predictions.\n- [Tracking classes](/vertex-ai/docs/python-sdk/tracking-classes) work with Vertex ML Metadata, Vertex AI Experiments, and Vertex AI TensorBoard."]]