Vertex AI SDK-Klasse – Übersicht

Data Scientists und Entwickler für maschinelles Lernen (ML) verwenden das Vertex AI SDK für Python, um Modelle in einem benutzerdefinierten ML-Workflow zu erstellen, zu trainieren und bereitzustellen. Dazu gehören das Erstellen von Datasets und Hochladen von Daten, das Trainieren eines ML-Modells, das Hochladen und Speichern des Modells, das Bereitstellen des Modells, das Ausführen von Batchvorhersagejobs sowie das Verwalten der Modelle und Endpunkte.

Das Vertex AI SDK enthält auch Klassen zur Erstellung von generativen KI-Lösungen mit Basismodellen für Text, Code, Chat und Texteinbettung. Mit diesen Klassen können Sie Text generieren, einen Text- oder Code-Chatbot erstellen, ein Basismodell optimieren und eine Texteinbettung erstellen. Eine Texteinbettung ist Text in Form eines Vektors, der zur Suche nach Elementen verwendet wird. Weitere Informationen finden Sie unter Einführung in Sprachmodelle im Vertex AI SDK.

Sie können das Vertex AI SDK für Python in einem gehosteten JupyterLab-Notebook in Vertex AI verwenden, um Code zu schreiben und auszuführen. Die Notebooks enthalten vorinstallierte ML-Frameworks wie TensorFlow und PyTorch. Sie können auch andere Notebooks wie Colab-Notebooks oder eine Entwicklerumgebung Ihrer Wahl verwenden, die Python unterstützt.

Wenn Sie das Vertex AI SDK for Python sofort ausprobieren möchten, sehen Sie sich die folgenden Ressourcen an:

Das Vertex AI SDK enthält viele Klassen, mit denen Sie die Datenaufnahme automatisieren, Modelle trainieren und Vorhersagen erhalten können. Außerdem enthält es Kurse, mit denen Sie Ihren ML-Workflow überwachen, bewerten und optimieren können. Die Kurse lassen sich grob in die folgenden Kategorien unterteilen:

  • Datenklassen umfassen Klassen, die mit strukturierten Daten, unstrukturierten Daten und dem Vertex AI Feature Store funktionieren.
  • Trainingsklassen umfassen Klassen, die mit AutoML-Training für strukturierte und unstrukturierte Daten, benutzerdefiniertes Training, Hyperparameter-Training und Pipeline-Training funktionieren.
  • Modellklassen funktionieren mit Modellen und Modellbewertungen.
  • Vorhersageklassen funktionieren mit Batchvorhersagen, Onlinevorhersagen und Vorhersagen der Vektorsuche.
  • Tracking-Klassen funktionieren mit Vertex ML Metadata, Vertex AI Experiments und Vertex AI TensorBoard.