Obtener inferencias de un modelo de detección de objetos de imagen

En esta página se explica cómo obtener inferencias online (en tiempo real) e inferencias por lotes de tus modelos de detección de objetos en imágenes mediante la consola o la API Vertex AI. Google Cloud

Diferencia entre las inferencias online y por lotes

Las inferencias online son solicitudes síncronas que se envían a un endpoint de un modelo. Usa inferencias online cuando hagas solicitudes en respuesta a la entrada de una aplicación o en situaciones que requieran inferencias oportunas.

Las inferencias por lotes son solicitudes asíncronas. Puedes solicitar inferencias por lotes directamente desde el recurso del modelo sin necesidad de desplegarlo en un endpoint. En el caso de los datos de imagen, usa las inferencias por lotes si no necesitas una respuesta inmediata y quieres procesar los datos acumulados con una sola solicitud.

Obtener inferencias online

Desplegar un modelo en un endpoint

Debes desplegar un modelo en un endpoint para poder usarlo y ofrecer inferencias online. Al desplegar un modelo, se asocian recursos físicos al modelo para que pueda ofrecer inferencias online con baja latencia.

Puedes desplegar más de un modelo en un endpoint y desplegar un modelo en más de un endpoint. Para obtener más información sobre las opciones y los casos prácticos de implementación de modelos, consulta el artículo Acerca de la implementación de modelos.

Utilice uno de los siguientes métodos para implementar un modelo:

Google Cloud consola

  1. En la Google Cloud consola, en la sección Vertex AI, ve a la página Modelos.

    Ir a la página Modelos

  2. Haz clic en el nombre del modelo que quieras implementar para abrir su página de detalles.

  3. Selecciona la pestaña Implementar y probar.

    Si tu modelo ya se ha desplegado en algún endpoint, aparecerá en la sección Desplegar tu modelo.

  4. Haz clic en Implementar en endpoint.

  5. Para desplegar el modelo en un nuevo endpoint, selecciona Crear endpoint y asigna un nombre al nuevo endpoint. Para desplegar el modelo en un endpoint, selecciona Añadir a endpoint disponible y elige el endpoint en la lista desplegable.

    Puede añadir más de un modelo a un endpoint y añadir un modelo a más de un endpoint. Más información

  6. Si despliega su modelo en un punto final que ya tiene uno o varios modelos desplegados, debe actualizar el porcentaje de División del tráfico del modelo que va a desplegar y de los modelos que ya están desplegados para que todos los porcentajes sumen el 100%.

  7. Selecciona Imagen de AutoML y configura lo siguiente:

    1. Si vas a desplegar el modelo en un nuevo endpoint, acepta el valor 100 en División del tráfico. De lo contrario, ajuste los valores de división del tráfico de todos los modelos del endpoint para que sumen 100.

    2. Introduce el Número de nodos de computación que quieras proporcionar a tu modelo.

      Es el número de nodos disponibles para este modelo en todo momento. Se te cobra por los nodos, aunque no haya tráfico de inferencia. Consulta la página de precios.

    3. Consulta cómo cambiar la configuración predeterminada del registro de inferencias.

    4. Solo modelos de clasificación (opcional): en la sección Opciones de interpretabilidad, selecciona Habilitar atribuciones de funciones para este modelo para habilitar Vertex Explainable AI. Acepta los ajustes de visualización que ya tengas o elige nuevos valores y haz clic en Hecho.

      El despliegue de modelos de clasificación de imágenes de AutoML con Vertex Explainable AI configurado y la realización de inferencias con explicaciones es opcional. Si habilitas Vertex Explainable AI en el momento de la implementación, se aplicarán costes adicionales en función del número de nodos implementados y del tiempo de implementación. Consulta la página de precios para obtener más información.

    5. Haz clic en Hecho en el modelo y, cuando todos los porcentajes de División del tráfico sean correctos, haz clic en Continuar.

      Se muestra la región en la que se implementa el modelo. Debe ser la región en la que has creado el modelo.

    6. Haga clic en Desplegar para desplegar el modelo en el endpoint.

API

Cuando despliegas un modelo con la API de Vertex AI, sigues estos pasos:

  1. Crea un endpoint si es necesario.
  2. Obtén el ID del endpoint.
  3. Despliega el modelo en el endpoint.

Crear un punto final

Si vas a desplegar un modelo en un endpoint que ya tienes, puedes saltarte este paso.

gcloud

En el siguiente ejemplo se usa el comando gcloud ai endpoints create:

gcloud ai endpoints create \
  --region=LOCATION \
  --display-name=ENDPOINT_NAME

Haz los cambios siguientes:

  • LOCATION_ID: la región en la que usas Vertex AI.
  • ENDPOINT_NAME: el nombre visible del endpoint.

La herramienta de Google Cloud CLI puede tardar unos segundos en crear el endpoint.

REST

Antes de usar los datos de la solicitud, haz las siguientes sustituciones:

  • LOCATION_ID: tu región.
  • PROJECT_ID: tu ID de proyecto.
  • ENDPOINT_NAME: el nombre visible del endpoint.

Método HTTP y URL:

POST https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/endpoints

Cuerpo JSON de la solicitud:

{
  "display_name": "ENDPOINT_NAME"
}

Para enviar tu solicitud, despliega una de estas opciones:

Deberías recibir una respuesta JSON similar a la siguiente:

{
  "name": "projects/PROJECT_NUMBER/locations/LOCATION_ID/endpoints/ENDPOINT_ID/operations/OPERATION_ID",
  "metadata": {
    "@type": "type.googleapis.com/google.cloud.aiplatform.v1.CreateEndpointOperationMetadata",
    "genericMetadata": {
      "createTime": "2020-11-05T17:45:42.812656Z",
      "updateTime": "2020-11-05T17:45:42.812656Z"
    }
  }
}
Puedes sondear el estado de la operación hasta que la respuesta incluya "done": true.

Java

Antes de probar este ejemplo, sigue las Java instrucciones de configuración de la guía de inicio rápido de Vertex AI con bibliotecas de cliente. Para obtener más información, consulta la documentación de referencia de la API Java de Vertex AI.

Para autenticarte en Vertex AI, configura las credenciales predeterminadas de la aplicación. Para obtener más información, consulta el artículo Configurar la autenticación en un entorno de desarrollo local.


import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.aiplatform.v1.CreateEndpointOperationMetadata;
import com.google.cloud.aiplatform.v1.Endpoint;
import com.google.cloud.aiplatform.v1.EndpointServiceClient;
import com.google.cloud.aiplatform.v1.EndpointServiceSettings;
import com.google.cloud.aiplatform.v1.LocationName;
import java.io.IOException;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;

public class CreateEndpointSample {

  public static void main(String[] args)
      throws IOException, InterruptedException, ExecutionException, TimeoutException {
    // TODO(developer): Replace these variables before running the sample.
    String project = "YOUR_PROJECT_ID";
    String endpointDisplayName = "YOUR_ENDPOINT_DISPLAY_NAME";
    createEndpointSample(project, endpointDisplayName);
  }

  static void createEndpointSample(String project, String endpointDisplayName)
      throws IOException, InterruptedException, ExecutionException, TimeoutException {
    EndpointServiceSettings endpointServiceSettings =
        EndpointServiceSettings.newBuilder()
            .setEndpoint("us-central1-aiplatform.googleapis.com:443")
            .build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (EndpointServiceClient endpointServiceClient =
        EndpointServiceClient.create(endpointServiceSettings)) {
      String location = "us-central1";
      LocationName locationName = LocationName.of(project, location);
      Endpoint endpoint = Endpoint.newBuilder().setDisplayName(endpointDisplayName).build();

      OperationFuture<Endpoint, CreateEndpointOperationMetadata> endpointFuture =
          endpointServiceClient.createEndpointAsync(locationName, endpoint);
      System.out.format("Operation name: %s\n", endpointFuture.getInitialFuture().get().getName());
      System.out.println("Waiting for operation to finish...");
      Endpoint endpointResponse = endpointFuture.get(300, TimeUnit.SECONDS);

      System.out.println("Create Endpoint Response");
      System.out.format("Name: %s\n", endpointResponse.getName());
      System.out.format("Display Name: %s\n", endpointResponse.getDisplayName());
      System.out.format("Description: %s\n", endpointResponse.getDescription());
      System.out.format("Labels: %s\n", endpointResponse.getLabelsMap());
      System.out.format("Create Time: %s\n", endpointResponse.getCreateTime());
      System.out.format("Update Time: %s\n", endpointResponse.getUpdateTime());
    }
  }
}

Node.js

Antes de probar este ejemplo, sigue las Node.js instrucciones de configuración de la guía de inicio rápido de Vertex AI con bibliotecas de cliente. Para obtener más información, consulta la documentación de referencia de la API Node.js de Vertex AI.

Para autenticarte en Vertex AI, configura las credenciales predeterminadas de la aplicación. Para obtener más información, consulta el artículo Configurar la autenticación en un entorno de desarrollo local.

/**
 * TODO(developer): Uncomment these variables before running the sample.\
 * (Not necessary if passing values as arguments)
 */

// const endpointDisplayName = 'YOUR_ENDPOINT_DISPLAY_NAME';
// const project = 'YOUR_PROJECT_ID';
// const location = 'YOUR_PROJECT_LOCATION';

// Imports the Google Cloud Endpoint Service Client library
const {EndpointServiceClient} = require('@google-cloud/aiplatform');

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: 'us-central1-aiplatform.googleapis.com',
};

// Instantiates a client
const endpointServiceClient = new EndpointServiceClient(clientOptions);

async function createEndpoint() {
  // Configure the parent resource
  const parent = `projects/${project}/locations/${location}`;
  const endpoint = {
    displayName: endpointDisplayName,
  };
  const request = {
    parent,
    endpoint,
  };

  // Get and print out a list of all the endpoints for this resource
  const [response] = await endpointServiceClient.createEndpoint(request);
  console.log(`Long running operation : ${response.name}`);

  // Wait for operation to complete
  await response.promise();
  const result = response.result;

  console.log('Create endpoint response');
  console.log(`\tName : ${result.name}`);
  console.log(`\tDisplay name : ${result.displayName}`);
  console.log(`\tDescription : ${result.description}`);
  console.log(`\tLabels : ${JSON.stringify(result.labels)}`);
  console.log(`\tCreate time : ${JSON.stringify(result.createTime)}`);
  console.log(`\tUpdate time : ${JSON.stringify(result.updateTime)}`);
}
createEndpoint();

Python

Para saber cómo instalar o actualizar el SDK de Vertex AI para Python, consulta Instalar el SDK de Vertex AI para Python. Para obtener más información, consulta la documentación de referencia de la API Python.

def create_endpoint_sample(
    project: str,
    display_name: str,
    location: str,
):
    aiplatform.init(project=project, location=location)

    endpoint = aiplatform.Endpoint.create(
        display_name=display_name,
        project=project,
        location=location,
    )

    print(endpoint.display_name)
    print(endpoint.resource_name)
    return endpoint

Recuperar el ID del endpoint

Necesitas el ID del endpoint para desplegar el modelo.

gcloud

En el siguiente ejemplo se usa el comando gcloud ai endpoints list:

gcloud ai endpoints list \
  --region=LOCATION \
  --filter=display_name=ENDPOINT_NAME

Haz los cambios siguientes:

  • LOCATION_ID: la región en la que usas Vertex AI.
  • ENDPOINT_NAME: el nombre visible del endpoint.

Fíjate en el número que aparece en la columna ENDPOINT_ID. Úsalo en el paso siguiente.

REST

Antes de usar los datos de la solicitud, haz las siguientes sustituciones:

  • LOCATION_ID: la región en la que usas Vertex AI.
  • PROJECT_ID: .
  • ENDPOINT_NAME: el nombre visible del endpoint.

Método HTTP y URL:

GET https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/endpoints?filter=display_name=ENDPOINT_NAME

Para enviar tu solicitud, despliega una de estas opciones:

Deberías recibir una respuesta JSON similar a la siguiente:

{
  "endpoints": [
    {
      "name": "projects/PROJECT_NUMBER/locations/LOCATION_ID/endpoints/ENDPOINT_ID",
      "displayName": "ENDPOINT_NAME",
      "etag": "AMEw9yPz5pf4PwBHbRWOGh0PcAxUdjbdX2Jm3QO_amguy3DbZGP5Oi_YUKRywIE-BtLx",
      "createTime": "2020-04-17T18:31:11.585169Z",
      "updateTime": "2020-04-17T18:35:08.568959Z"
    }
  ]
}
Ten en cuenta el ENDPOINT_ID.

Desplegar el modelo

Selecciona la pestaña correspondiente a tu idioma o entorno:

gcloud

En los siguientes ejemplos se usa el comando gcloud ai endpoints deploy-model.

En el siguiente ejemplo se implementa un Model en un Endpoint sin dividir el tráfico entre varios recursos DeployedModel:

Antes de usar los datos de los comandos que se indican a continuación, haz los siguientes cambios:

  • ENDPOINT_ID: ID del endpoint.
  • LOCATION_ID: la región en la que usas Vertex AI.
  • MODEL_ID: ID del modelo que se va a implementar.
  • DEPLOYED_MODEL_NAME: nombre del DeployedModel. También puedes usar el nombre visible de la Model para la DeployedModel.
  • MIN_REPLICA_COUNT: número mínimo de nodos de esta implementación. El número de nodos se puede aumentar o reducir según lo requiera la carga de inferencia, hasta el número máximo de nodos y nunca por debajo de este número.
  • MAX_REPLICA_COUNT: número máximo de nodos de este despliegue. El número de nodos se puede aumentar o reducir según lo requiera la carga de inferencia, hasta este número de nodos y nunca por debajo del número mínimo de nodos. Si omite la marca --max-replica-count, el número máximo de nodos se define como el valor de --min-replica-count.

Ejecuta el comando gcloud ai endpoints deploy-model:

Linux, macOS o Cloud Shell

gcloud ai endpoints deploy-model ENDPOINT_ID\
  --region=LOCATION_ID \
  --model=MODEL_ID \
  --display-name=DEPLOYED_MODEL_NAME \
  --min-replica-count=MIN_REPLICA_COUNT \
  --max-replica-count=MAX_REPLICA_COUNT \
  --traffic-split=0=100

Windows (PowerShell)

gcloud ai endpoints deploy-model ENDPOINT_ID`
  --region=LOCATION_ID `
  --model=MODEL_ID `
  --display-name=DEPLOYED_MODEL_NAME `
  --min-replica-count=MIN_REPLICA_COUNT `
  --max-replica-count=MAX_REPLICA_COUNT `
  --traffic-split=0=100

Windows (cmd.exe)

gcloud ai endpoints deploy-model ENDPOINT_ID^
  --region=LOCATION_ID ^
  --model=MODEL_ID ^
  --display-name=DEPLOYED_MODEL_NAME ^
  --min-replica-count=MIN_REPLICA_COUNT ^
  --max-replica-count=MAX_REPLICA_COUNT ^
  --traffic-split=0=100
 

Dividir el tráfico

La marca --traffic-split=0=100 de los ejemplos anteriores envía el 100% del tráfico de predicción que recibe Endpoint al nuevo DeployedModel, que se representa con el ID temporal 0. Si tu Endpoint ya tiene otros DeployedModel recursos, puedes dividir el tráfico entre los nuevos DeployedModel y los antiguos. Por ejemplo, para enviar el 20% del tráfico a la nueva DeployedModel y el 80% a una anterior, ejecuta el siguiente comando.

Antes de usar los datos de los comandos que se indican a continuación, haz los siguientes cambios:

  • OLD_DEPLOYED_MODEL_ID: el ID del DeployedModel.

Ejecuta el comando gcloud ai endpoints deploy-model:

Linux, macOS o Cloud Shell

gcloud ai endpoints deploy-model ENDPOINT_ID\
  --region=LOCATION_ID \
  --model=MODEL_ID \
  --display-name=DEPLOYED_MODEL_NAME \ 
  --min-replica-count=MIN_REPLICA_COUNT \
  --max-replica-count=MAX_REPLICA_COUNT \
  --traffic-split=0=20,OLD_DEPLOYED_MODEL_ID=80

Windows (PowerShell)

gcloud ai endpoints deploy-model ENDPOINT_ID`
  --region=LOCATION_ID `
  --model=MODEL_ID `
  --display-name=DEPLOYED_MODEL_NAME \ 
  --min-replica-count=MIN_REPLICA_COUNT `
  --max-replica-count=MAX_REPLICA_COUNT `
  --traffic-split=0=20,OLD_DEPLOYED_MODEL_ID=80

Windows (cmd.exe)

gcloud ai endpoints deploy-model ENDPOINT_ID^
  --region=LOCATION_ID ^
  --model=MODEL_ID ^
  --display-name=DEPLOYED_MODEL_NAME \ 
  --min-replica-count=MIN_REPLICA_COUNT ^
  --max-replica-count=MAX_REPLICA_COUNT ^
  --traffic-split=0=20,OLD_DEPLOYED_MODEL_ID=80
 

REST

Despliega el modelo.

Antes de usar los datos de la solicitud, haz las siguientes sustituciones:

  • LOCATION_ID: la región en la que usas Vertex AI.
  • PROJECT_ID: .
  • ENDPOINT_ID: ID del endpoint.
  • MODEL_ID: ID del modelo que se va a implementar.
  • DEPLOYED_MODEL_NAME: nombre del DeployedModel. También puedes usar el nombre visible de la Model para la DeployedModel.
  • MIN_REPLICA_COUNT: número mínimo de nodos de esta implementación. El número de nodos se puede aumentar o reducir según lo requiera la carga de inferencia, hasta el número máximo de nodos y nunca por debajo de este número.
  • MAX_REPLICA_COUNT: número máximo de nodos de este despliegue. El número de nodos se puede aumentar o reducir según lo requiera la carga de inferencia, hasta este número de nodos y nunca por debajo del número mínimo de nodos.
  • TRAFFIC_SPLIT_THIS_MODEL: porcentaje del tráfico de predicción de este punto final que se va a dirigir al modelo que se está desplegando con esta operación. El valor predeterminado es 100. Todos los porcentajes de tráfico deben sumar 100. Más información sobre las divisiones de tráfico
  • DEPLOYED_MODEL_ID_N: opcional. Si se implementan otros modelos en este endpoint, debes actualizar los porcentajes de división del tráfico para que todos los porcentajes sumen 100.
  • TRAFFIC_SPLIT_MODEL_N: valor del porcentaje de división del tráfico de la clave del ID del modelo implementado.
  • PROJECT_NUMBER: el número de proyecto generado automáticamente de tu proyecto

Método HTTP y URL:

POST https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/endpoints/ENDPOINT_ID:deployModel

Cuerpo JSON de la solicitud:

{
  "deployedModel": {
    "model": "projects/PROJECT_ID/locations/LOCATION_ID/models/MODEL_ID",
    "displayName": "DEPLOYED_MODEL_NAME",
    "automaticResources": {
       "minReplicaCount": MIN_REPLICA_COUNT,
       "maxReplicaCount": MAX_REPLICA_COUNT
     }
  },
  "trafficSplit": {
    "0": TRAFFIC_SPLIT_THIS_MODEL,
    "DEPLOYED_MODEL_ID_1": TRAFFIC_SPLIT_MODEL_1,
    "DEPLOYED_MODEL_ID_2": TRAFFIC_SPLIT_MODEL_2
  },
}

Para enviar tu solicitud, despliega una de estas opciones:

Deberías recibir una respuesta JSON similar a la siguiente:

{
  "name": "projects/PROJECT_ID/locations/LOCATION_ID/endpoints/ENDPOINT_ID/operations/OPERATION_ID",
  "metadata": {
    "@type": "type.googleapis.com/google.cloud.aiplatform.v1.DeployModelOperationMetadata",
    "genericMetadata": {
      "createTime": "2020-10-19T17:53:16.502088Z",
      "updateTime": "2020-10-19T17:53:16.502088Z"
    }
  }
}

Java

Antes de probar este ejemplo, sigue las Java instrucciones de configuración de la guía de inicio rápido de Vertex AI con bibliotecas de cliente. Para obtener más información, consulta la documentación de referencia de la API Java de Vertex AI.

Para autenticarte en Vertex AI, configura las credenciales predeterminadas de la aplicación. Para obtener más información, consulta el artículo Configurar la autenticación en un entorno de desarrollo local.


import com.google.api.gax.longrunning.OperationFuture;
import com.google.api.gax.longrunning.OperationTimedPollAlgorithm;
import com.google.api.gax.retrying.RetrySettings;
import com.google.cloud.aiplatform.v1.AutomaticResources;
import com.google.cloud.aiplatform.v1.DedicatedResources;
import com.google.cloud.aiplatform.v1.DeployModelOperationMetadata;
import com.google.cloud.aiplatform.v1.DeployModelResponse;
import com.google.cloud.aiplatform.v1.DeployedModel;
import com.google.cloud.aiplatform.v1.EndpointName;
import com.google.cloud.aiplatform.v1.EndpointServiceClient;
import com.google.cloud.aiplatform.v1.EndpointServiceSettings;
import com.google.cloud.aiplatform.v1.MachineSpec;
import com.google.cloud.aiplatform.v1.ModelName;
import com.google.cloud.aiplatform.v1.stub.EndpointServiceStubSettings;
import java.io.IOException;
import java.util.HashMap;
import java.util.Map;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;
import org.threeten.bp.Duration;

public class DeployModelSample {

  public static void main(String[] args)
      throws IOException, InterruptedException, ExecutionException, TimeoutException {
    // TODO(developer): Replace these variables before running the sample.
    String project = "YOUR_PROJECT_ID";
    String deployedModelDisplayName = "YOUR_DEPLOYED_MODEL_DISPLAY_NAME";
    String endpointId = "YOUR_ENDPOINT_NAME";
    String modelId = "YOUR_MODEL_ID";
    int timeout = 900;
    deployModelSample(project, deployedModelDisplayName, endpointId, modelId, timeout);
  }

  static void deployModelSample(
      String project,
      String deployedModelDisplayName,
      String endpointId,
      String modelId,
      int timeout)
      throws IOException, InterruptedException, ExecutionException, TimeoutException {

    // Set long-running operations (LROs) timeout
    final OperationTimedPollAlgorithm operationTimedPollAlgorithm =
        OperationTimedPollAlgorithm.create(
            RetrySettings.newBuilder()
                .setInitialRetryDelay(Duration.ofMillis(5000L))
                .setRetryDelayMultiplier(1.5)
                .setMaxRetryDelay(Duration.ofMillis(45000L))
                .setInitialRpcTimeout(Duration.ZERO)
                .setRpcTimeoutMultiplier(1.0)
                .setMaxRpcTimeout(Duration.ZERO)
                .setTotalTimeout(Duration.ofSeconds(timeout))
                .build());

    EndpointServiceStubSettings.Builder endpointServiceStubSettingsBuilder =
        EndpointServiceStubSettings.newBuilder();
    endpointServiceStubSettingsBuilder
        .deployModelOperationSettings()
        .setPollingAlgorithm(operationTimedPollAlgorithm);
    EndpointServiceStubSettings endpointStubSettings = endpointServiceStubSettingsBuilder.build();
    EndpointServiceSettings endpointServiceSettings =
        EndpointServiceSettings.create(endpointStubSettings);
    endpointServiceSettings =
        endpointServiceSettings.toBuilder()
            .setEndpoint("us-central1-aiplatform.googleapis.com:443")
            .build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (EndpointServiceClient endpointServiceClient =
        EndpointServiceClient.create(endpointServiceSettings)) {
      String location = "us-central1";
      EndpointName endpointName = EndpointName.of(project, location, endpointId);
      // key '0' assigns traffic for the newly deployed model
      // Traffic percentage values must add up to 100
      // Leave dictionary empty if endpoint should not accept any traffic
      Map<String, Integer> trafficSplit = new HashMap<>();
      trafficSplit.put("0", 100);
      ModelName modelName = ModelName.of(project, location, modelId);
      AutomaticResources automaticResourcesInput =
          AutomaticResources.newBuilder().setMinReplicaCount(1).setMaxReplicaCount(1).build();
      DeployedModel deployedModelInput =
          DeployedModel.newBuilder()
              .setModel(modelName.toString())
              .setDisplayName(deployedModelDisplayName)
              .setAutomaticResources(automaticResourcesInput)
              .build();

      OperationFuture<DeployModelResponse, DeployModelOperationMetadata> deployModelResponseFuture =
          endpointServiceClient.deployModelAsync(endpointName, deployedModelInput, trafficSplit);
      System.out.format(
          "Operation name: %s\n", deployModelResponseFuture.getInitialFuture().get().getName());
      System.out.println("Waiting for operation to finish...");
      DeployModelResponse deployModelResponse = deployModelResponseFuture.get(20, TimeUnit.MINUTES);

      System.out.println("Deploy Model Response");
      DeployedModel deployedModel = deployModelResponse.getDeployedModel();
      System.out.println("\tDeployed Model");
      System.out.format("\t\tid: %s\n", deployedModel.getId());
      System.out.format("\t\tmodel: %s\n", deployedModel.getModel());
      System.out.format("\t\tDisplay Name: %s\n", deployedModel.getDisplayName());
      System.out.format("\t\tCreate Time: %s\n", deployedModel.getCreateTime());

      DedicatedResources dedicatedResources = deployedModel.getDedicatedResources();
      System.out.println("\t\tDedicated Resources");
      System.out.format("\t\t\tMin Replica Count: %s\n", dedicatedResources.getMinReplicaCount());

      MachineSpec machineSpec = dedicatedResources.getMachineSpec();
      System.out.println("\t\t\tMachine Spec");
      System.out.format("\t\t\t\tMachine Type: %s\n", machineSpec.getMachineType());
      System.out.format("\t\t\t\tAccelerator Type: %s\n", machineSpec.getAcceleratorType());
      System.out.format("\t\t\t\tAccelerator Count: %s\n", machineSpec.getAcceleratorCount());

      AutomaticResources automaticResources = deployedModel.getAutomaticResources();
      System.out.println("\t\tAutomatic Resources");
      System.out.format("\t\t\tMin Replica Count: %s\n", automaticResources.getMinReplicaCount());
      System.out.format("\t\t\tMax Replica Count: %s\n", automaticResources.getMaxReplicaCount());
    }
  }
}

Node.js

Antes de probar este ejemplo, sigue las Node.js instrucciones de configuración de la guía de inicio rápido de Vertex AI con bibliotecas de cliente. Para obtener más información, consulta la documentación de referencia de la API Node.js de Vertex AI.

Para autenticarte en Vertex AI, configura las credenciales predeterminadas de la aplicación. Para obtener más información, consulta el artículo Configurar la autenticación en un entorno de desarrollo local.

/**
 * TODO(developer): Uncomment these variables before running the sample.\
 * (Not necessary if passing values as arguments)
 */

// const modelId = "YOUR_MODEL_ID";
// const endpointId = 'YOUR_ENDPOINT_ID';
// const deployedModelDisplayName = 'YOUR_DEPLOYED_MODEL_DISPLAY_NAME';
// const project = 'YOUR_PROJECT_ID';
// const location = 'YOUR_PROJECT_LOCATION';

const modelName = `projects/${project}/locations/${location}/models/${modelId}`;
const endpoint = `projects/${project}/locations/${location}/endpoints/${endpointId}`;
// Imports the Google Cloud Endpoint Service Client library
const {EndpointServiceClient} = require('@google-cloud/aiplatform');

// Specifies the location of the api endpoint:
const clientOptions = {
  apiEndpoint: 'us-central1-aiplatform.googleapis.com',
};

// Instantiates a client
const endpointServiceClient = new EndpointServiceClient(clientOptions);

async function deployModel() {
  // Configure the parent resource
  // key '0' assigns traffic for the newly deployed model
  // Traffic percentage values must add up to 100
  // Leave dictionary empty if endpoint should not accept any traffic
  const trafficSplit = {0: 100};
  const deployedModel = {
    // format: 'projects/{project}/locations/{location}/models/{model}'
    model: modelName,
    displayName: deployedModelDisplayName,
    automaticResources: {minReplicaCount: 1, maxReplicaCount: 1},
  };
  const request = {
    endpoint,
    deployedModel,
    trafficSplit,
  };

  // Get and print out a list of all the endpoints for this resource
  const [response] = await endpointServiceClient.deployModel(request);
  console.log(`Long running operation : ${response.name}`);

  // Wait for operation to complete
  await response.promise();
  const result = response.result;

  console.log('Deploy model response');
  const modelDeployed = result.deployedModel;
  console.log('\tDeployed model');
  if (!modelDeployed) {
    console.log('\t\tId : {}');
    console.log('\t\tModel : {}');
    console.log('\t\tDisplay name : {}');
    console.log('\t\tCreate time : {}');

    console.log('\t\tDedicated resources');
    console.log('\t\t\tMin replica count : {}');
    console.log('\t\t\tMachine spec {}');
    console.log('\t\t\t\tMachine type : {}');
    console.log('\t\t\t\tAccelerator type : {}');
    console.log('\t\t\t\tAccelerator count : {}');

    console.log('\t\tAutomatic resources');
    console.log('\t\t\tMin replica count : {}');
    console.log('\t\t\tMax replica count : {}');
  } else {
    console.log(`\t\tId : ${modelDeployed.id}`);
    console.log(`\t\tModel : ${modelDeployed.model}`);
    console.log(`\t\tDisplay name : ${modelDeployed.displayName}`);
    console.log(`\t\tCreate time : ${modelDeployed.createTime}`);

    const dedicatedResources = modelDeployed.dedicatedResources;
    console.log('\t\tDedicated resources');
    if (!dedicatedResources) {
      console.log('\t\t\tMin replica count : {}');
      console.log('\t\t\tMachine spec {}');
      console.log('\t\t\t\tMachine type : {}');
      console.log('\t\t\t\tAccelerator type : {}');
      console.log('\t\t\t\tAccelerator count : {}');
    } else {
      console.log(
        `\t\t\tMin replica count : \
          ${dedicatedResources.minReplicaCount}`
      );
      const machineSpec = dedicatedResources.machineSpec;
      console.log('\t\t\tMachine spec');
      console.log(`\t\t\t\tMachine type : ${machineSpec.machineType}`);
      console.log(
        `\t\t\t\tAccelerator type : ${machineSpec.acceleratorType}`
      );
      console.log(
        `\t\t\t\tAccelerator count : ${machineSpec.acceleratorCount}`
      );
    }

    const automaticResources = modelDeployed.automaticResources;
    console.log('\t\tAutomatic resources');
    if (!automaticResources) {
      console.log('\t\t\tMin replica count : {}');
      console.log('\t\t\tMax replica count : {}');
    } else {
      console.log(
        `\t\t\tMin replica count : \
          ${automaticResources.minReplicaCount}`
      );
      console.log(
        `\t\t\tMax replica count : \
          ${automaticResources.maxReplicaCount}`
      );
    }
  }
}
deployModel();

Python

Para saber cómo instalar o actualizar el SDK de Vertex AI para Python, consulta Instalar el SDK de Vertex AI para Python. Para obtener más información, consulta la documentación de referencia de la API Python.

def deploy_model_with_automatic_resources_sample(
    project,
    location,
    model_name: str,
    endpoint: Optional[aiplatform.Endpoint] = None,
    deployed_model_display_name: Optional[str] = None,
    traffic_percentage: Optional[int] = 0,
    traffic_split: Optional[Dict[str, int]] = None,
    min_replica_count: int = 1,
    max_replica_count: int = 1,
    metadata: Optional[Sequence[Tuple[str, str]]] = (),
    sync: bool = True,
):
    """
    model_name: A fully-qualified model resource name or model ID.
          Example: "projects/123/locations/us-central1/models/456" or
          "456" when project and location are initialized or passed.
    """

    aiplatform.init(project=project, location=location)

    model = aiplatform.Model(model_name=model_name)

    model.deploy(
        endpoint=endpoint,
        deployed_model_display_name=deployed_model_display_name,
        traffic_percentage=traffic_percentage,
        traffic_split=traffic_split,
        min_replica_count=min_replica_count,
        max_replica_count=max_replica_count,
        metadata=metadata,
        sync=sync,
    )

    model.wait()

    print(model.display_name)
    print(model.resource_name)
    return model

Consulta cómo cambiar la configuración predeterminada del registro de inferencias.

Obtener el estado de la operación

Algunas solicitudes inician operaciones de larga duración que requieren tiempo para completarse. Estas solicitudes devuelven un nombre de operación que puedes usar para ver el estado de la operación o cancelarla. Vertex AI proporciona métodos auxiliares para hacer llamadas a operaciones de larga duración. Para obtener más información, consulta Trabajar con operaciones de larga duración.

Hacer una inferencia online con el modelo desplegado

Para hacer una inferencia online, envía uno o varios elementos de prueba a un modelo para que los analice. El modelo devuelve resultados basados en el objetivo del modelo. Para obtener más información sobre los resultados de la inferencia, consulta la página Interpretar resultados.

Consola

Usa la consola de Google Cloud para solicitar una inferencia online. Tu modelo debe estar desplegado en un endpoint.

  1. En la Google Cloud consola, en la sección Vertex AI, ve a la página Modelos.

    Ir a la página Modelos

  2. En la lista de modelos, haz clic en el nombre del modelo del que quieras solicitar inferencias.

  3. Selecciona la pestaña Implementar y probar.

  4. En la sección Prueba tu modelo, añade elementos de prueba para solicitar una inferencia.

    Para usar los modelos de AutoML con objetivos de imagen, debes subir una imagen para solicitar una inferencia.

    Para obtener información sobre la importancia de las funciones locales, consulta Obtener explicaciones.

    Una vez completada la inferencia, Vertex AI devuelve los resultados en la consola.

API

Usa la API de Vertex AI para solicitar una inferencia online. Tu modelo debe estar desplegado en un endpoint.

Entre los objetivos de los tipos de datos de imagen se incluyen la clasificación y la detección de objetos.

Inferencia de modelos Edge: cuando uses modelos Edge de imagen de AutoML para la inferencia, debes convertir cualquier archivo de inferencia que no sea JPEG a un archivo JPEG antes de enviar la solicitud de inferencia.

gcloud

  1. Crea un archivo llamado request.json con el siguiente contenido:

    {
      "instances": [{
        "content": "CONTENT"
      }],
      "parameters": {
        "confidenceThreshold": THRESHOLD_VALUE,
        "maxPredictions": MAX_PREDICTIONS
      }
    }
    

    Haz los cambios siguientes:

    • CONTENT: el contenido de la imagen codificado en base64.
    • THRESHOLD_VALUE Opcional: El modelo solo devuelve predicciones que tienen puntuaciones de confianza con al menos este valor.
    • MAX_PREDICTIONS Opcional: El modelo devuelve hasta este número de predicciones con las puntuaciones de confianza más altas.
  2. Ejecuta el siguiente comando:

    gcloud ai endpoints predict ENDPOINT_ID \
      --region=LOCATION_ID \
      --json-request=request.json

    Haz los cambios siguientes:

    • ENDPOINT_ID: ID del endpoint.
    • LOCATION_ID: la región en la que usas Vertex AI.

REST

Antes de usar los datos de la solicitud, haz las siguientes sustituciones:

  • LOCATION_ID: región en la que se encuentra el endpoint. Por ejemplo, us-central1.
  • PROJECT_ID: .
  • ENDPOINT_ID: ID del endpoint.
  • CONTENT: el contenido de la imagen codificado en base64.
  • THRESHOLD_VALUE Opcional: El modelo solo devuelve predicciones que tienen puntuaciones de confianza con al menos este valor.
  • MAX_PREDICTIONS Opcional: El modelo devuelve hasta este número de predicciones con las puntuaciones de confianza más altas.

Método HTTP y URL:

POST https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/endpoints/ENDPOINT_ID:predict

Cuerpo JSON de la solicitud:

{
  "instances": [{
    "content": "CONTENT"
  }],
  "parameters": {
    "confidenceThreshold": THRESHOLD_VALUE,
    "maxPredictions": MAX_PREDICTIONS
  }
}

Para enviar tu solicitud, elige una de estas opciones:

curl

Guarda el cuerpo de la solicitud en un archivo llamado request.json y ejecuta el siguiente comando:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/endpoints/ENDPOINT_ID:predict"

PowerShell

Guarda el cuerpo de la solicitud en un archivo llamado request.json y ejecuta el siguiente comando:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/endpoints/ENDPOINT_ID:predict" | Select-Object -Expand Content

Deberías recibir una respuesta JSON similar a la siguiente:

{
  "predictions": [
    {
      "confidences": [
        0.975873291,
        0.972160876,
        0.879488528,
        0.866532683,
        0.686478078
      ],
      "displayNames": [
        "Salad",
        "Salad",
        "Tomato",
        "Tomato",
        "Salad"
      ],
      "ids": [
        "7517774415476555776",
        "7517774415476555776",
        "2906088397049167872",
        "2906088397049167872",
        "7517774415476555776"
      ],
      "bboxes": [
        [
          0.0869686604,
          0.977020741,
          0.395135701,
          1
        ],
        [
          0,
          0.488701463,
          0.00157663226,
          0.512249
        ],
        [
          0.361617863,
          0.509664357,
          0.772928834,
          0.914706349
        ],
        [
          0.310678929,
          0.45781514,
          0.565507233,
          0.711237729
        ],
        [
          0.584359646,
          1,
          0.00116168708,
          0.130817384
        ]
      ]
    }
  ],
  "deployedModelId": "3860570043075002368"
}

Java

Antes de probar este ejemplo, sigue las Java instrucciones de configuración de la guía de inicio rápido de Vertex AI con bibliotecas de cliente. Para obtener más información, consulta la documentación de referencia de la API Java de Vertex AI.

Para autenticarte en Vertex AI, configura las credenciales predeterminadas de la aplicación. Para obtener más información, consulta el artículo Configurar la autenticación en un entorno de desarrollo local.


import com.google.cloud.aiplatform.util.ValueConverter;
import com.google.cloud.aiplatform.v1.EndpointName;
import com.google.cloud.aiplatform.v1.PredictResponse;
import com.google.cloud.aiplatform.v1.PredictionServiceClient;
import com.google.cloud.aiplatform.v1.PredictionServiceSettings;
import com.google.cloud.aiplatform.v1.schema.predict.instance.ImageObjectDetectionPredictionInstance;
import com.google.cloud.aiplatform.v1.schema.predict.params.ImageObjectDetectionPredictionParams;
import com.google.cloud.aiplatform.v1.schema.predict.prediction.ImageObjectDetectionPredictionResult;
import com.google.protobuf.Value;
import java.io.IOException;
import java.nio.charset.StandardCharsets;
import java.nio.file.Files;
import java.nio.file.Paths;
import java.util.ArrayList;
import java.util.Base64;
import java.util.List;

public class PredictImageObjectDetectionSample {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String project = "YOUR_PROJECT_ID";
    String fileName = "YOUR_IMAGE_FILE_PATH";
    String endpointId = "YOUR_ENDPOINT_ID";
    predictImageObjectDetection(project, fileName, endpointId);
  }

  static void predictImageObjectDetection(String project, String fileName, String endpointId)
      throws IOException {
    PredictionServiceSettings settings =
        PredictionServiceSettings.newBuilder()
            .setEndpoint("us-central1-aiplatform.googleapis.com:443")
            .build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (PredictionServiceClient predictionServiceClient =
        PredictionServiceClient.create(settings)) {
      String location = "us-central1";
      EndpointName endpointName = EndpointName.of(project, location, endpointId);

      byte[] contents = Base64.getEncoder().encode(Files.readAllBytes(Paths.get(fileName)));
      String content = new String(contents, StandardCharsets.UTF_8);

      ImageObjectDetectionPredictionParams params =
          ImageObjectDetectionPredictionParams.newBuilder()
              .setConfidenceThreshold((float) (0.5))
              .setMaxPredictions(5)
              .build();

      ImageObjectDetectionPredictionInstance instance =
          ImageObjectDetectionPredictionInstance.newBuilder().setContent(content).build();

      List<Value> instances = new ArrayList<>();
      instances.add(ValueConverter.toValue(instance));

      PredictResponse predictResponse =
          predictionServiceClient.predict(endpointName, instances, ValueConverter.toValue(params));
      System.out.println("Predict Image Object Detection Response");
      System.out.format("\tDeployed Model Id: %s\n", predictResponse.getDeployedModelId());

      System.out.println("Predictions");
      for (Value prediction : predictResponse.getPredictionsList()) {

        ImageObjectDetectionPredictionResult.Builder resultBuilder =
            ImageObjectDetectionPredictionResult.newBuilder();

        ImageObjectDetectionPredictionResult result =
            (ImageObjectDetectionPredictionResult)
                ValueConverter.fromValue(resultBuilder, prediction);

        for (int i = 0; i < result.getIdsCount(); i++) {
          System.out.printf("\tDisplay name: %s\n", result.getDisplayNames(i));
          System.out.printf("\tConfidences: %f\n", result.getConfidences(i));
          System.out.printf("\tIDs: %d\n", result.getIds(i));
          System.out.printf("\tBounding boxes: %s\n", result.getBboxes(i));
        }
      }
    }
  }
}

Node.js

Antes de probar este ejemplo, sigue las Node.js instrucciones de configuración de la guía de inicio rápido de Vertex AI con bibliotecas de cliente. Para obtener más información, consulta la documentación de referencia de la API Node.js de Vertex AI.

Para autenticarte en Vertex AI, configura las credenciales predeterminadas de la aplicación. Para obtener más información, consulta el artículo Configurar la autenticación en un entorno de desarrollo local.

/**
 * TODO(developer): Uncomment these variables before running the sample.\
 * (Not necessary if passing values as arguments)
 */

// const filename = "YOUR_PREDICTION_FILE_NAME";
// const endpointId = "YOUR_ENDPOINT_ID";
// const project = 'YOUR_PROJECT_ID';
// const location = 'YOUR_PROJECT_LOCATION';
const aiplatform = require('@google-cloud/aiplatform');
const {instance, params, prediction} =
  aiplatform.protos.google.cloud.aiplatform.v1.schema.predict;

// Imports the Google Cloud Prediction Service Client library
const {PredictionServiceClient} = aiplatform.v1;

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: 'us-central1-aiplatform.googleapis.com',
};

// Instantiates a client
const predictionServiceClient = new PredictionServiceClient(clientOptions);

async function predictImageObjectDetection() {
  // Configure the endpoint resource
  const endpoint = `projects/${project}/locations/${location}/endpoints/${endpointId}`;

  const parametersObj = new params.ImageObjectDetectionPredictionParams({
    confidenceThreshold: 0.5,
    maxPredictions: 5,
  });
  const parameters = parametersObj.toValue();

  const fs = require('fs');
  const image = fs.readFileSync(filename, 'base64');
  const instanceObj = new instance.ImageObjectDetectionPredictionInstance({
    content: image,
  });

  const instanceVal = instanceObj.toValue();
  const instances = [instanceVal];
  const request = {
    endpoint,
    instances,
    parameters,
  };

  // Predict request
  const [response] = await predictionServiceClient.predict(request);

  console.log('Predict image object detection response');
  console.log(`\tDeployed model id : ${response.deployedModelId}`);
  const predictions = response.predictions;
  console.log('Predictions :');
  for (const predictionResultVal of predictions) {
    const predictionResultObj =
      prediction.ImageObjectDetectionPredictionResult.fromValue(
        predictionResultVal
      );
    for (const [i, label] of predictionResultObj.displayNames.entries()) {
      console.log(`\tDisplay name: ${label}`);
      console.log(`\tConfidences: ${predictionResultObj.confidences[i]}`);
      console.log(`\tIDs: ${predictionResultObj.ids[i]}`);
      console.log(`\tBounding boxes: ${predictionResultObj.bboxes[i]}\n\n`);
    }
  }
}
predictImageObjectDetection();

Python

Para saber cómo instalar o actualizar el SDK de Vertex AI para Python, consulta Instalar el SDK de Vertex AI para Python. Para obtener más información, consulta la documentación de referencia de la API Python.

import base64

from google.cloud import aiplatform
from google.cloud.aiplatform.gapic.schema import predict


def predict_image_object_detection_sample(
    project: str,
    endpoint_id: str,
    filename: str,
    location: str = "us-central1",
    api_endpoint: str = "us-central1-aiplatform.googleapis.com",
):
    # The AI Platform services require regional API endpoints.
    client_options = {"api_endpoint": api_endpoint}
    # Initialize client that will be used to create and send requests.
    # This client only needs to be created once, and can be reused for multiple requests.
    client = aiplatform.gapic.PredictionServiceClient(client_options=client_options)
    with open(filename, "rb") as f:
        file_content = f.read()

    # The format of each instance should conform to the deployed model's prediction input schema.
    encoded_content = base64.b64encode(file_content).decode("utf-8")
    instance = predict.instance.ImageObjectDetectionPredictionInstance(
        content=encoded_content,
    ).to_value()
    instances = [instance]
    # See gs://google-cloud-aiplatform/schema/predict/params/image_object_detection_1.0.0.yaml for the format of the parameters.
    parameters = predict.params.ImageObjectDetectionPredictionParams(
        confidence_threshold=0.5,
        max_predictions=5,
    ).to_value()
    endpoint = client.endpoint_path(
        project=project, location=location, endpoint=endpoint_id
    )
    response = client.predict(
        endpoint=endpoint, instances=instances, parameters=parameters
    )
    print("response")
    print(" deployed_model_id:", response.deployed_model_id)
    # See gs://google-cloud-aiplatform/schema/predict/prediction/image_object_detection_1.0.0.yaml for the format of the predictions.
    predictions = response.predictions
    for prediction in predictions:
        print(" prediction:", dict(prediction))

Obtener inferencias por lotes

Para hacer una solicitud de inferencia por lotes, debes especificar una fuente de entrada y un formato de salida en el que Vertex AI almacene los resultados de la inferencia. Las inferencias por lotes para el tipo de modelo de imagen de AutoML requieren un archivo JSON Lines de entrada y el nombre de un segmento de Cloud Storage para almacenar la salida.

Requisitos de los datos de entrada

La entrada de las solicitudes por lotes especifica los elementos que se enviarán a tu modelo para la inferencia. En el caso de los modelos de detección de objetos en imágenes, puedes usar un archivo JSON Lines para especificar una lista de imágenes sobre las que hacer inferencias y, a continuación, almacenar el archivo JSON Lines en un segmento de Cloud Storage. En el siguiente ejemplo se muestra una sola línea de un archivo JSON Lines de entrada:

{"content": "gs://sourcebucket/datasets/images/source_image.jpg", "mimeType": "image/jpeg"}

Solicitar una inferencia por lotes

Para las solicitudes de inferencia por lotes, puedes usar la Google Cloud consola o la API Vertex AI. En función del número de elementos de entrada que hayas enviado, una tarea de inferencia por lotes puede tardar un tiempo en completarse.

Google Cloud consola

Usa la consola Google Cloud para solicitar una inferencia por lotes.

  1. En la Google Cloud consola, en la sección Vertex AI, ve a la página Predicciones por lotes.

    Ir a la página Predicciones por lotes

  2. Haga clic en Crear para abrir la ventana Nueva predicción por lotes y siga estos pasos:

    1. Escribe un nombre para la inferencia por lotes.
    2. En Nombre del modelo, selecciona el nombre del modelo que quieras usar para esta inferencia por lotes.
    3. En Ruta de origen, especifique la ubicación de Cloud Storage en la que se encuentra el archivo de entrada JSON Lines.
    4. En Ruta de destino, especifica una ubicación de Cloud Storage donde se almacenarán los resultados de la inferencia por lotes. El formato de Salida viene determinado por el objetivo del modelo. Los modelos de AutoML para objetivos de imagen generan archivos JSON Lines.

API

Usa la API de Vertex AI para enviar solicitudes de inferencia por lotes.

REST

Antes de usar los datos de la solicitud, haz las siguientes sustituciones:

  • LOCATION_ID: región en la que se almacena el modelo y se ejecuta el trabajo de inferencia por lotes. Por ejemplo, us-central1.
  • PROJECT_ID:
  • BATCH_JOB_NAME: nombre visible del trabajo por lotes
  • MODEL_ID: ID del modelo que se va a usar para hacer inferencias.
  • THRESHOLD_VALUE (opcional): Vertex AI devuelve solo las inferencias que tengan puntuaciones de confianza con al menos este valor. El valor predeterminado es 0.0.
  • MAX_PREDICTIONS (opcional): Vertex AI devuelve hasta este número de inferencias, empezando por las que tienen las puntuaciones de confianza más altas. El valor predeterminado es 10.
  • URI: URI de Cloud Storage donde se encuentra el archivo JSON Lines de entrada.
  • BUCKET: tu segmento de Cloud Storage
  • PROJECT_NUMBER: el número de proyecto generado automáticamente de tu proyecto

Método HTTP y URL:

POST https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/batchPredictionJobs

Cuerpo JSON de la solicitud:

{
    "displayName": "BATCH_JOB_NAME",
    "model": "projects/PROJECT/locations/LOCATION/models/MODEL_ID",
    "modelParameters": {
      "confidenceThreshold": THRESHOLD_VALUE,
      "maxPredictions": MAX_PREDICTIONS
    },
    "inputConfig": {
        "instancesFormat": "jsonl",
        "gcsSource": {
            "uris": ["URI"],
        },
    },
    "outputConfig": {
        "predictionsFormat": "jsonl",
        "gcsDestination": {
            "outputUriPrefix": "OUTPUT_BUCKET",
        },
    },
}

Para enviar tu solicitud, elige una de estas opciones:

curl

Guarda el cuerpo de la solicitud en un archivo llamado request.json y ejecuta el siguiente comando:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/batchPredictionJobs"

PowerShell

Guarda el cuerpo de la solicitud en un archivo llamado request.json y ejecuta el siguiente comando:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/batchPredictionJobs" | Select-Object -Expand Content

Deberías recibir una respuesta JSON similar a la siguiente:

{
  "name": "projects/PROJECT_NUMBER/locations/LOCATION_ID/batchPredictionJobs/BATCH_JOB_ID",
  "displayName": "BATCH_JOB_NAME",
  "model": "projects/PROJECT_ID/locations/LOCATION_ID/models/MODEL_ID",
  "inputConfig": {
    "instancesFormat": "jsonl",
    "gcsSource": {
      "uris": [
        "CONTENT"
      ]
    }
  },
  "outputConfig": {
    "predictionsFormat": "jsonl",
    "gcsDestination": {
      "outputUriPrefix": "BUCKET"
    }
  },
  "state": "JOB_STATE_PENDING",
  "createTime": "2020-05-30T02:58:44.341643Z",
  "updateTime": "2020-05-30T02:58:44.341643Z",
  "modelDisplayName": "MODEL_NAME",
  "modelObjective": "MODEL_OBJECTIVE"
}

Puedes sondear el estado del trabajo por lotes con BATCH_JOB_ID hasta que el trabajo state sea JOB_STATE_SUCCEEDED.

Python

Para saber cómo instalar o actualizar el SDK de Vertex AI para Python, consulta Instalar el SDK de Vertex AI para Python. Para obtener más información, consulta la documentación de referencia de la API Python.

def create_batch_prediction_job_sample(
    project: str,
    location: str,
    model_resource_name: str,
    job_display_name: str,
    gcs_source: Union[str, Sequence[str]],
    gcs_destination: str,
    sync: bool = True,
):
    aiplatform.init(project=project, location=location)

    my_model = aiplatform.Model(model_resource_name)

    batch_prediction_job = my_model.batch_predict(
        job_display_name=job_display_name,
        gcs_source=gcs_source,
        gcs_destination_prefix=gcs_destination,
        sync=sync,
    )

    batch_prediction_job.wait()

    print(batch_prediction_job.display_name)
    print(batch_prediction_job.resource_name)
    print(batch_prediction_job.state)
    return batch_prediction_job

Recuperar resultados de inferencia por lotes

Vertex AI envía la salida de la inferencia por lotes al destino que hayas especificado.

Cuando se completa una tarea de inferencia por lotes, la salida de la inferencia se almacena en el segmento de Cloud Storage que hayas especificado en tu solicitud.

Ejemplo de resultados de inferencia por lotes

A continuación se muestra un ejemplo de los resultados de la inferencia por lotes de un modelo de detección de objetos de imagen.

Importante: Los cuadros delimitadores se especifican de la siguiente manera:

"bboxes": [ [xMin, xMax, yMin, yMax], ...]

Donde xMin y xMax son los valores mínimos y máximos de x, y yMin y yMax son los valores mínimos y máximos de y, respectivamente.

{
  "instance": {"content": "gs://bucket/image.jpg", "mimeType": "image/jpeg"},
  "prediction": {
    "ids": [1, 2],
    "displayNames": ["cat", "dog"],
    "bboxes":  [
      [0.1, 0.2, 0.3, 0.4],
      [0.2, 0.3, 0.4, 0.5]
    ],
    "confidences": [0.7, 0.5]
  }
}