Track parameters and metrics for custom training jobs: Notebook
Stay organized with collections
Save and categorize content based on your preferences.
This notebook demonstrates how to use Vertex AI SDK for Python to track metrics
and parameters for Vertex AI custom training jobs, and how to perform
detailed analysis using this data.
Notebook:
This tutorial uses the following Google Cloud ML services and resources:
Vertex AI dataset
Vertex AI model
Vertex AI endpoint
Vertex AI custom training Job
Vertex AI Experiments
The steps performed include:
Track training parameters and prediction metrics for a custom training job.
Extract and perform analysis for all parameters and metrics within a
Vertex AI Experiments.
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Hard to understand","hardToUnderstand","thumb-down"],["Incorrect information or sample code","incorrectInformationOrSampleCode","thumb-down"],["Missing the information/samples I need","missingTheInformationSamplesINeed","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2025-09-04 UTC."],[],[],null,["# Track parameters and metrics for custom training jobs: Notebook\n\nThis notebook demonstrates how to use Vertex AI SDK for Python to track metrics\nand parameters for Vertex AI custom training jobs, and how to perform\ndetailed analysis using this data.\n\nNotebook:\n---------\n\n| To see an example of tracking parameters and metrics for a custom training job,\n| run the \"Track parameters and metrics for custom training job\" notebook in one of the following\n| environments:\n|\n| [Open in Colab](https://colab.research.google.com/github/GoogleCloudPlatform/vertex-ai-samples/blob/main/notebooks/official/ml_metadata/sdk-metric-parameter-tracking-for-custom-jobs.ipynb)\n|\n|\n| \\|\n|\n| [Open in Colab Enterprise](https://console.cloud.google.com/vertex-ai/colab/import/https%3A%2F%2Fraw.githubusercontent.com%2FGoogleCloudPlatform%2Fvertex-ai-samples%2Fmain%2Fnotebooks%2Fofficial%2Fml_metadata%2Fsdk-metric-parameter-tracking-for-custom-jobs.ipynb)\n|\n|\n| \\|\n|\n| [Open\n| in Vertex AI Workbench](https://console.cloud.google.com/vertex-ai/workbench/deploy-notebook?download_url=https%3A%2F%2Fraw.githubusercontent.com%2FGoogleCloudPlatform%2Fvertex-ai-samples%2Fmain%2Fnotebooks%2Fofficial%2Fml_metadata%2Fsdk-metric-parameter-tracking-for-custom-jobs.ipynb)\n|\n|\n| \\|\n|\n| [View on GitHub](https://github.com/GoogleCloudPlatform/vertex-ai-samples/blob/main/notebooks/official/ml_metadata/sdk-metric-parameter-tracking-for-custom-jobs.ipynb)\n\nThis tutorial uses the following Google Cloud ML services and resources:\n\n- Vertex AI dataset\n- Vertex AI model\n- Vertex AI endpoint\n- Vertex AI custom training Job\n- Vertex AI Experiments\n\nThe steps performed include:\n\n1. Track training parameters and prediction metrics for a custom training job.\n2. Extract and perform analysis for all parameters and metrics within a Vertex AI Experiments.\n\nRelevant content\n----------------\n\n- [Vertex ML Metadata](/vertex-ai/docs/ml-metadata/introduction)\n- [Custom training overview](/vertex-ai/docs/training/overview)\n- [Endpoint](/vertex-ai/docs/python-sdk/prediction-classes#endpoint)\n- [Create and manage experiment runs](/vertex-ai/docs/experiments/create-manage-exp-run#vertex-ai-sdk-for-python)"]]