Treinamento personalizado do Vertex AI TensorBoard com contêineres pré-criados: notebook
Mantenha tudo organizado com as coleções
Salve e categorize o conteúdo com base nas suas preferências.
Neste tutorial, você vai aprender a criar um job de treinamento personalizado usando
contêineres pré-criados e monitorar o processo de treinamento no TensorBoard da Vertex AI
quase em tempo real.
Neste tutorial, usamos os seguintes serviços e recursos de ML do Google Cloud:
Vertex AI Training
Tensorboard da Vertex AI
As etapas a serem realizadas incluem:
Configure uma conta de serviço e buckets do Cloud Storage.
Escreva seu código de treinamento personalizado.
Empacotar e fazer upload do código de treinamento para o Cloud Storage
Crie e lance seu job de treinamento personalizado com o TensorBoard da Vertex AI ativado para monitoramento quase
em tempo real.
[[["Fácil de entender","easyToUnderstand","thumb-up"],["Meu problema foi resolvido","solvedMyProblem","thumb-up"],["Outro","otherUp","thumb-up"]],[["Difícil de entender","hardToUnderstand","thumb-down"],["Informações incorretas ou exemplo de código","incorrectInformationOrSampleCode","thumb-down"],["Não contém as informações/amostras de que eu preciso","missingTheInformationSamplesINeed","thumb-down"],["Problema na tradução","translationIssue","thumb-down"],["Outro","otherDown","thumb-down"]],["Última atualização 2024-08-30 UTC."],[],[],null,["# Vertex AI TensorBoard custom training with prebuilt container: Notebook\n\nIn this tutorial, you learn how to create a custom training job using prebuilt\ncontainers, and monitor your training process on Vertex AI TensorBoard\nin near real time. \n| To see an example of tensorboard custom training with prebuilt container,\n| run the \"Vertex AI TensorBoard custom training with prebuilt container\" notebook in one of the following\n| environments:\n|\n| [Open in Colab](https://colab.research.google.com/github/GoogleCloudPlatform/vertex-ai-samples/blob/main/notebooks/official/tensorboard/tensorboard_custom_training_with_prebuilt_container.ipynb)\n|\n|\n| \\|\n|\n| [Open in Colab Enterprise](https://console.cloud.google.com/vertex-ai/colab/import/https%3A%2F%2Fraw.githubusercontent.com%2FGoogleCloudPlatform%2Fvertex-ai-samples%2Fmain%2Fnotebooks%2Fofficial%2Ftensorboard%2Ftensorboard_custom_training_with_prebuilt_container.ipynb)\n|\n|\n| \\|\n|\n| [Open\n| in Vertex AI Workbench](https://console.cloud.google.com/vertex-ai/workbench/deploy-notebook?download_url=https%3A%2F%2Fraw.githubusercontent.com%2FGoogleCloudPlatform%2Fvertex-ai-samples%2Fmain%2Fnotebooks%2Fofficial%2Ftensorboard%2Ftensorboard_custom_training_with_prebuilt_container.ipynb)\n|\n|\n| \\|\n|\n| [View on GitHub](https://github.com/GoogleCloudPlatform/vertex-ai-samples/blob/main/notebooks/official/tensorboard/tensorboard_custom_training_with_prebuilt_container.ipynb)\n\nThis tutorial uses the following Google Cloud ML services and resources:\n\n- Vertex AI training\n- Vertex AI TensorBoard\n\nThe steps performed include:\n\n- Set up a service account and Cloud Storage buckets.\n- Write your customized training code.\n- Package and upload your training code to Cloud Storage.\n- Create and launch your custom training job with Vertex AI TensorBoard enabled for near real time monitoring.\n\nRelevant content\n----------------\n\n- [Vertex AI TensorBoard](/vertex-ai/docs/experiments/tensorboard-introduction)\n- [Custom training](/vertex-ai/docs/training/overview)"]]