데이터 과학자에게 일반적인 워크플로는 로컬에서 노트북을 사용하여 모델을 학습시키고, 매개변수를 로깅하고, 학습 시계열 측정항목을 Vertex AI 텐서보드에 로깅하고, 평가 측정항목을 로깅하는 것입니다.
데이터 과학자는 수행되는 모든 복잡한 데이터 랭글링을 단순화 및 표준화하기 위해 회사 내에서 다른 사람들이 작성한 데이터 사전 처리 코드를 재사용할 수 있기를 바랍니다. 데이터 과학자에게 필요한 기능은 다음과 같습니다.
Python 데이터 사전 처리 라이브러리를 사용하여 노트북에서 인메모리 데이터 세트(Pandas Dataframe)를 삭제합니다.
Keras를 사용하여 모델을 학습합니다(노트북에서 다시 수행).
노트북: 사전 처리된 데이터로 모델 실험
'커스텀 학습용 Vertex AI 실험 계보 빌드' 노트북에서는 Vertex AI Experiments에서 전처리 코드를 통합하는 방법을 알아봅니다.
또한 ML 여정에 따라 생성되는 메타데이터 및 아티팩트를 기록, 분석, 디버깅할 수 있게 해주는 실험 계보를 빌드합니다.
[[["이해하기 쉬움","easyToUnderstand","thumb-up"],["문제가 해결됨","solvedMyProblem","thumb-up"],["기타","otherUp","thumb-up"]],[["이해하기 어려움","hardToUnderstand","thumb-down"],["잘못된 정보 또는 샘플 코드","incorrectInformationOrSampleCode","thumb-down"],["필요한 정보/샘플이 없음","missingTheInformationSamplesINeed","thumb-down"],["번역 문제","translationIssue","thumb-down"],["기타","otherDown","thumb-down"]],["최종 업데이트: 2025-09-08(UTC)"],[],[],null,["# Model training with prebuilt data pre-processing code: Notebook\n\nAs a Data Scientist, this is a common workflow: Train a model\nlocally (in my Notebook), log the parameters, log the training time series\nmetrics to ,\nand log the evaluation metrics.\n\nAs a Data Scientist, I want to be able to reuse data pre-processing code that\nothers within my company have written to simplify and standardize all the\ncomplex data wrangling that we do. I want to be able to:\n\n1. Use a Python data pre-processing library to clean up an in memory dataset (a Pandas Dataframe), in a notebook.\n2. Train a model using Keras (again in a notebook).\n\nNotebook: Model experimentation with preprocessed data\n------------------------------------------------------\n\n| To see an example of building a Vertex AI Experiments lineage for custom training,\n| run the \"Build Vertex AI Experiment lineage for custom training\" notebook in one of the following\n| environments:\n|\n| [Open in Colab](https://colab.research.google.com/github/GoogleCloudPlatform/vertex-ai-samples/blob/main/notebooks/official/experiments/build_model_experimentation_lineage_with_prebuild_code.ipynb)\n|\n|\n| \\|\n|\n| [Open in Colab Enterprise](https://console.cloud.google.com/vertex-ai/colab/import/https%3A%2F%2Fraw.githubusercontent.com%2FGoogleCloudPlatform%2Fvertex-ai-samples%2Fmain%2Fnotebooks%2Fofficial%2Fexperiments%2Fbuild_model_experimentation_lineage_with_prebuild_code.ipynb)\n|\n|\n| \\|\n|\n| [Open\n| in Vertex AI Workbench](https://console.cloud.google.com/vertex-ai/workbench/deploy-notebook?download_url=https%3A%2F%2Fraw.githubusercontent.com%2FGoogleCloudPlatform%2Fvertex-ai-samples%2Fmain%2Fnotebooks%2Fofficial%2Fexperiments%2Fbuild_model_experimentation_lineage_with_prebuild_code.ipynb)\n|\n|\n| \\|\n|\n| [View on GitHub](https://github.com/GoogleCloudPlatform/vertex-ai-samples/blob/main/notebooks/official/experiments/build_model_experimentation_lineage_with_prebuild_code.ipynb)\n\nIn the \"Build Vertex AI Experiments lineage for custom training\"\nnotebook, you'll learn how to integrate preprocessing code in\nVertex AI Experiments.\nAlso, you'll build the experiment lineage that lets you record, analyze,\ndebug, and audit metadata and artifacts produced along your ML journey.\n\nYou can view the artifact lineage in the Google Cloud console.\n\nRelevant content\n----------------\n\n- [Manually log data to an experiment run](/vertex-ai/docs/experiments/log-data)\n - [Log summary metrics](/vertex-ai/docs/experiments/log-data#summary-metrics)\n - [Log time series metrics](/vertex-ai/docs/experiments/log-data#time_series_metrics)\n - [Log parameters](/vertex-ai/docs/experiments/log-data#parameters)\n - [Log classification metrics](/vertex-ai/docs/experiments/log-data#classification-metrics)\n\n\u003c!-- --\u003e\n\n- [Track executions and artifacts](/vertex-ai/docs/experiments/track-executions-artifacts)"]]