Confrontare i modelli addestrati e valutati: notebook
Mantieni tutto organizzato con le raccolte
Salva e classifica i contenuti in base alle tue preferenze.
In qualità di data scientist, questo è un flusso di lavoro comune: addestra un modello localmente (nel mio notebook), registra i parametri, registra le metriche delle serie temporali di addestramento in Vertex AI TensorBoard e registra le metriche di valutazione.
Puoi visualizzare le esecuzioni dell'esperimento associate a un esperimento nella pagina
Esperimenti della console Google Cloud .
Blocco note: confronta i modelli addestrati localmente
Nel blocco note "Vertex AI: Track parameters and metrics for locally trained
models" (Vertex AI: monitora parametri e metriche per i modelli addestrati localmente), imparerai a utilizzare Vertex AI Experiments per:
Registra i parametri del modello.
Registra la perdita e le metriche in ogni epoca in TensorBoard.
[[["Facile da capire","easyToUnderstand","thumb-up"],["Il problema è stato risolto","solvedMyProblem","thumb-up"],["Altra","otherUp","thumb-up"]],[["Difficile da capire","hardToUnderstand","thumb-down"],["Informazioni o codice di esempio errati","incorrectInformationOrSampleCode","thumb-down"],["Mancano le informazioni o gli esempi di cui ho bisogno","missingTheInformationSamplesINeed","thumb-down"],["Problema di traduzione","translationIssue","thumb-down"],["Altra","otherDown","thumb-down"]],["Ultimo aggiornamento 2025-09-04 UTC."],[],[],null,["# Compare trained and evaluated models: Notebook\n\nAs a Data Scientist, this is a common workflow: Train a model\nlocally (in my Notebook), log the parameters, log the training time series\nmetrics to ,\nand log the evaluation metrics.\n\nYou can view the experiment runs associated with an experiment on the\nexperiments page in the Google Cloud console.\n\nNotebook: Compare locally trained models\n----------------------------------------\n\n| To see an example of comparing models,\n| run the \"Vertex AI: Track parameters and metrics for locally trained models\" notebook in one of the following\n| environments:\n|\n| [Open in Colab](https://colab.research.google.com/github/GoogleCloudPlatform/vertex-ai-samples/blob/main/notebooks/official/experiments/comparing_local_trained_models.ipynb)\n|\n|\n| \\|\n|\n| [Open in Colab Enterprise](https://console.cloud.google.com/vertex-ai/colab/import/https%3A%2F%2Fraw.githubusercontent.com%2FGoogleCloudPlatform%2Fvertex-ai-samples%2Fmain%2Fnotebooks%2Fofficial%2Fexperiments%2Fcomparing_local_trained_models.ipynb)\n|\n|\n| \\|\n|\n| [Open\n| in Vertex AI Workbench](https://console.cloud.google.com/vertex-ai/workbench/deploy-notebook?download_url=https%3A%2F%2Fraw.githubusercontent.com%2FGoogleCloudPlatform%2Fvertex-ai-samples%2Fmain%2Fnotebooks%2Fofficial%2Fexperiments%2Fcomparing_local_trained_models.ipynb)\n|\n|\n| \\|\n|\n| [View on GitHub](https://github.com/GoogleCloudPlatform/vertex-ai-samples/blob/main/notebooks/official/experiments/comparing_local_trained_models.ipynb)\n\nIn the \"Vertex AI: Track parameters and metrics for locally trained\nmodels\" notebook, you'll learn how to use Vertex AI Experiments to:\n\n- Log the model parameters.\n- Log the loss and metrics on every epoch to TensorBoard.\n- Log the evaluation metrics.\n- Compare two experiment runs.\n\nRelevant content\n----------------\n\n- [Log data to an experiment run](/vertex-ai/docs/experiments/log-data)\n - [Assign backing Vertex AI TensorBoard resource for Time Series Metric](/vertex-ai/docs/experiments/log-data#assign_backing_resource_for_time_series_metric)\n - [Log summary metrics](/vertex-ai/docs/experiments/log-data#summary_metrics)\n - [Log time series metrics](/vertex-ai/docs/experiments/log-data#time_series_metrics)\n - [Log parameters](/vertex-ai/docs/experiments/log-data#parameters)"]]