Entrena un modelo de AutoML Edge con la API de Vertex AI

Puedes crear un modelo de AutoML directamente en la consola de Google Cloud o crear una canalización de entrenamiento de manera programática a través de la API de o una de las bibliotecas cliente de Vertex AI.

Este modelo se crea con un conjunto de datos preparado que proporcionas a través de la consola o la API de Vertex AI. La API de Vertex AI usa los elementos del conjunto de datos para entrenar el modelo, probarlo y evaluar su rendimiento. Revisa los resultados de la evaluación, ajusta el conjunto de datos de entrenamiento según sea necesario y crea un trabajo de entrenamiento nuevo con el conjunto de datos mejorado.

El entrenamiento de modelos puede tardar varias horas en completarse. La API de Vertex AI te permite obtener el estado del trabajo de entrenamiento.

Crea una canalización de entrenamiento de AutoML Edge

Cuando tienes un conjunto de datos con un conjunto representativo de elementos de entrenamiento, estás listo para crear una canalización de entrenamiento de AutoML Edge.

Selecciona un tipo de datos.

Imagen

A continuación, selecciona la pestaña para tu objetivo:

Clasificación

Durante el entrenamiento, puedes elegir el tipo de modelo de AutoML Edge que desees, según tu caso de uso específico:

  • Latencia baja (MOBILE_TF_LOW_LATENCY_1)
  • Uso general (MOBILE_TF_VERSATILE_1)
  • Mayor calidad de predicción (MOBILE_TF_HIGH_ACCURACY_1)

Selecciona la pestaña correspondiente a tu idioma o entorno:

REST

Antes de usar cualquiera de los datos de solicitud a continuación, realiza los siguientes reemplazos:

  • LOCATION: Región en la que se encuentra el conjunto de datos y se crea el modelo. Por ejemplo, us-central1.
  • PROJECT: El ID del proyecto.
  • TRAININGPIPELINE_DISPLAYNAME: Obligatorio. Un nombre visible para trainingPipeline.
  • DATASET_ID: El número de ID del conjunto de datos que se usará para el entrenamiento.
  • fractionSplit: Opcional Una de las diversas opciones del AA posibles usa opciones de división para tus datos. En fractionSplit, los valores deben sumar 1. Por ejemplo:
    • {"trainingFraction": "0.7","validationFraction": "0.15","testFraction": "0.15"}
  • MODEL_DISPLAYNAME*: Un nombre visible para el modelo subido (creado) por TrainingPipeline.
  • MODEL_DESCRIPTION*: Es una descripción del modelo.
  • modelToUpload.labels*: Cualquier conjunto de pares clave-valor para organizar tus modelos. Por ejemplo:
    • "env": "prod"
    • "nivel": "backend"
  • EDGE_MODELTYPE: El tipo de modelo de Edge que se entrenará. Las opciones son las siguientes:
    • MOBILE_TF_LOW_LATENCY_1
    • MOBILE_TF_VERSATILE_1
    • MOBILE_TF_HIGH_ACCURACY_1
  • NODE_HOUR_BUDGET: El costo de entrenamiento real será igual o menor a este valor. Para los modelos de Edge, el presupuesto debe ser de 1,000 a 100,000 milihoras de procesamiento de nodo (inclusive).
  • PROJECT_NUMBER: el número de proyecto de tu proyecto generado de forma automática.

Método HTTP y URL:

POST https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/trainingPipelines

Cuerpo JSON de la solicitud:

{
  "displayName": "TRAININGPIPELINE_DISPLAYNAME",
  "inputDataConfig": {
    "datasetId": "DATASET_ID",
    "fractionSplit": {
      "trainingFraction": "DECIMAL",
      "validationFraction": "DECIMAL",
      "testFraction": "DECIMAL"
    }
  },
  "modelToUpload": {
    "displayName": "MODEL_DISPLAYNAME",
    "description": "MODEL_DESCRIPTION",
    "labels": {
      "KEY": "VALUE"
    }
  },
  "trainingTaskDefinition": "gs://google-cloud-aiplatform/schema/trainingjob/definition/automl_image_classification_1.0.0.yaml",
  "trainingTaskInputs": {
    "multiLabel": "false",
    "modelType": ["EDGE_MODELTYPE"],
    "budgetMilliNodeHours": NODE_HOUR_BUDGET
  }
}

Para enviar tu solicitud, elige una de estas opciones:

curl

Guarda el cuerpo de la solicitud en un archivo llamado request.json y ejecuta el siguiente comando:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/trainingPipelines"

PowerShell

Guarda el cuerpo de la solicitud en un archivo llamado request.json y ejecuta el siguiente comando:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/trainingPipelines" | Select-Object -Expand Content

La respuesta contiene información sobre las especificaciones y los TRAININGPIPELINE_ID.

Puedes obtener el estado del trabajo de trainingPipeline con el TRAININGPIPELINE_ID.

Clasificación

Durante el entrenamiento, puedes elegir el tipo de modelo de AutoML Edge que desees, según tu caso de uso específico:

  • Latencia baja (MOBILE_TF_LOW_LATENCY_1)
  • Uso general (MOBILE_TF_VERSATILE_1)
  • Mayor calidad de predicción (MOBILE_TF_HIGH_ACCURACY_1)

Selecciona la pestaña correspondiente a tu idioma o entorno:

REST

Antes de usar cualquiera de los datos de solicitud a continuación, realiza los siguientes reemplazos:

  • LOCATION: Región en la que se encuentra el conjunto de datos y se crea el modelo. Por ejemplo, us-central1.
  • PROJECT: El ID del proyecto.
  • TRAININGPIPELINE_DISPLAYNAME: Obligatorio. Un nombre visible para trainingPipeline.
  • DATASET_ID: El número de ID del conjunto de datos que se usará para el entrenamiento.
  • fractionSplit: Opcional Una de las diversas opciones del AA posibles usa opciones de división para tus datos. En fractionSplit, los valores deben sumar 1. Por ejemplo:
    • {"trainingFraction": "0.7","validationFraction": "0.15","testFraction": "0.15"}
  • MODEL_DISPLAYNAME*: Un nombre visible para el modelo subido (creado) por TrainingPipeline.
  • MODEL_DESCRIPTION*: Es una descripción del modelo.
  • modelToUpload.labels*: Cualquier conjunto de pares clave-valor para organizar tus modelos. Por ejemplo:
    • "env": "prod"
    • "nivel": "backend"
  • EDGE_MODELTYPE: El tipo de modelo de Edge que se entrenará. Las opciones son las siguientes:
    • MOBILE_TF_LOW_LATENCY_1
    • MOBILE_TF_VERSATILE_1
    • MOBILE_TF_HIGH_ACCURACY_1
  • NODE_HOUR_BUDGET: El costo de entrenamiento real será igual o menor a este valor. Para los modelos de Edge, el presupuesto debe ser de 1,000 a 100,000 milihoras de procesamiento de nodo (inclusive).
  • PROJECT_NUMBER: el número de proyecto de tu proyecto generado de forma automática.

Método HTTP y URL:

POST https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/trainingPipelines

Cuerpo JSON de la solicitud:

{
  "displayName": "TRAININGPIPELINE_DISPLAYNAME",
  "inputDataConfig": {
    "datasetId": "DATASET_ID",
    "fractionSplit": {
      "trainingFraction": "DECIMAL",
      "validationFraction": "DECIMAL",
      "testFraction": "DECIMAL"
    }
  },
  "modelToUpload": {
    "displayName": "MODEL_DISPLAYNAME",
    "description": "MODEL_DESCRIPTION",
    "labels": {
      "KEY": "VALUE"
    }
  },
  "trainingTaskDefinition": "gs://google-cloud-aiplatform/schema/trainingjob/definition/automl_image_classification_1.0.0.yaml",
  "trainingTaskInputs": {
    "multiLabel": "true",
    "modelType": ["EDGE_MODELTYPE"],
    "budgetMilliNodeHours": NODE_HOUR_BUDGET
  }
}

Para enviar tu solicitud, elige una de estas opciones:

curl

Guarda el cuerpo de la solicitud en un archivo llamado request.json y ejecuta el siguiente comando:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/trainingPipelines"

PowerShell

Guarda el cuerpo de la solicitud en un archivo llamado request.json y ejecuta el siguiente comando:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/trainingPipelines" | Select-Object -Expand Content

La respuesta contiene información sobre las especificaciones y los TRAININGPIPELINE_ID.

Puedes obtener el estado del trabajo de trainingPipeline con el TRAININGPIPELINE_ID.

Object Detection

Durante el entrenamiento, puedes elegir el tipo de modelo de AutoML Edge que desees, según tu caso de uso específico:

  • Latencia baja (MOBILE_TF_LOW_LATENCY_1)
  • Uso general (MOBILE_TF_VERSATILE_1)
  • Mayor calidad de predicción (MOBILE_TF_HIGH_ACCURACY_1)

Selecciona la pestaña correspondiente a tu idioma o entorno:

REST

Antes de usar cualquiera de los datos de solicitud a continuación, realiza los siguientes reemplazos:

  • LOCATION: Región en la que se encuentra el conjunto de datos y se crea el modelo. Por ejemplo, us-central1.
  • PROJECT: El ID del proyecto.
  • TRAININGPIPELINE_DISPLAYNAME: Obligatorio. Un nombre visible para trainingPipeline.
  • DATASET_ID: El número de ID del conjunto de datos que se usará para el entrenamiento.
  • fractionSplit: Opcional Una de las diversas opciones del AA posibles usa opciones de división para tus datos. En fractionSplit, los valores deben sumar 1. Por ejemplo:
    • {"trainingFraction": "0.7","validationFraction": "0.15","testFraction": "0.15"}
  • MODEL_DISPLAYNAME*: Un nombre visible para el modelo subido (creado) por TrainingPipeline.
  • MODEL_DESCRIPTION*: Es una descripción del modelo.
  • modelToUpload.labels*: Cualquier conjunto de pares clave-valor para organizar tus modelos. Por ejemplo:
    • "env": "prod"
    • "nivel": "backend"
  • EDGE_MODELTYPE: El tipo de modelo de Edge que se entrenará. Las opciones son las siguientes:
    • MOBILE_TF_LOW_LATENCY_1
    • MOBILE_TF_VERSATILE_1
    • MOBILE_TF_HIGH_ACCURACY_1
  • NODE_HOUR_BUDGET: El costo de entrenamiento real será igual o menor a este valor. Para los modelos de Cloud, el presupuesto debe ser de 20,000 a 900,000 milihoras de procesamiento de nodo (inclusive). El valor predeterminado es 216,000, que representa un día en el tiempo, lo que supone que se usan 9 nodos.
  • PROJECT_NUMBER: El número de proyecto de tu proyecto generado de forma automática.

Método HTTP y URL:

POST https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/trainingPipelines

Cuerpo JSON de la solicitud:

{
  "displayName": "TRAININGPIPELINE_DISPLAYNAME",
  "inputDataConfig": {
    "datasetId": "DATASET_ID",
    "fractionSplit": {
      "trainingFraction": "DECIMAL",
      "validationFraction": "DECIMAL",
      "testFraction": "DECIMAL"
    }
  },
  "modelToUpload": {
    "displayName": "MODEL_DISPLAYNAME",
    "description": "MODEL_DESCRIPTION",
    "labels": {
      "KEY": "VALUE"
    }
  },
  "trainingTaskDefinition": "gs://google-cloud-aiplatform/schema/trainingjob/definition/automl_image_object_detection_1.0.0.yaml",
  "trainingTaskInputs": {
    "modelType": ["EDGE_MODELTYPE"],
    "budgetMilliNodeHours": NODE_HOUR_BUDGET
  }
}

Para enviar tu solicitud, elige una de estas opciones:

curl

Guarda el cuerpo de la solicitud en un archivo llamado request.json y ejecuta el siguiente comando:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/trainingPipelines"

PowerShell

Guarda el cuerpo de la solicitud en un archivo llamado request.json y ejecuta el siguiente comando:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/trainingPipelines" | Select-Object -Expand Content

La respuesta contiene información sobre las especificaciones y los TRAININGPIPELINE_ID.

Puedes obtener el estado del trabajo de trainingPipeline con el TRAININGPIPELINE_ID.

Video

A continuación, selecciona la pestaña para tu objetivo:

Reconocimiento de acciones

Durante el entrenamiento, elige el siguiente tipo de AutoML Edge:

  • MOBILE_VERSATILE_1: Uso general

REST

Antes de usar cualquiera de los datos de solicitud a continuación, realiza los siguientes reemplazos:

  • PROJECT: El ID del proyecto.
  • LOCATION: Región en la que se encuentra el conjunto de datos y se crea el modelo. Por ejemplo, us-central1.
  • TRAINING_PIPELINE_DISPLAY_NAME: Obligatorio. Un nombre visible para TrainingPipeline.
  • DATASET_ID: ID del conjunto de datos de entrenamiento.
  • TRAINING_FRACTION, TEST_FRACTION: El objeto fractionSplit es opcional. La usas para controlar tu división de datos. Si deseas obtener más información a fin de controlar la división de datos, consulta Acerca de las divisiones de datos para los modelos de AutoML. Por ejemplo:
    • {"trainingFraction": "0.8","validationFraction": "0","testFraction": "0.2"}
  • MODEL_DISPLAY_NAME: Nombre visible del modelo entrenado
  • MODEL_DESCRIPTION: Es una descripción del modelo.
  • MODEL_LABELS: Cualquier conjunto de pares clave-valor para organizar los modelos. Por ejemplo:
    • "env": "prod"
    • "nivel": "backend"
  • EDGE_MODEL_TYPE:
    • MOBILE_VERSATILE_1: Uso general
  • PROJECT_NUMBER: El número de proyecto de tu proyecto generado de forma automática

Método HTTP y URL:

POST https://LOCATION-aiplatform.googleapis.com/beta1/projects/PROJECT/locations/LOCATION/trainingPipelines

Cuerpo JSON de la solicitud:

{
  "displayName": "TRAINING_PIPELINE_DISPLAY_NAME",
  "inputDataConfig": {
    "datasetId": "DATASET_ID",
    "fractionSplit": {
      "trainingFraction": "TRAINING_FRACTION",
      "validationFraction": "0",
      "testFraction": "TEST_FRACTION"
    }
  },
  "modelToUpload": {
    "displayName": "MODEL_DISPLAY_NAME",
    "description": "MODEL_DESCRIPTION",
    "labels": {
      "KEY": "VALUE"
    }
  },
  "trainingTaskDefinition": "gs://google-cloud-aiplatform/schema/trainingjob/definition/automl_video_action_recognition_1.0.0.yaml",
  "trainingTaskInputs": {
    "modelType": ["EDGE_MODEL_TYPE"],
  }
}

Para enviar tu solicitud, elige una de estas opciones:

curl

Guarda el cuerpo de la solicitud en un archivo llamado request.json y ejecuta el siguiente comando:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/beta1/projects/PROJECT/locations/LOCATION/trainingPipelines"

PowerShell

Guarda el cuerpo de la solicitud en un archivo llamado request.json y ejecuta el siguiente comando:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/beta1/projects/PROJECT/locations/LOCATION/trainingPipelines" | Select-Object -Expand Content

La respuesta contiene información sobre las especificaciones y los TRAININGPIPELINE_ID.

Puedes obtener el estado del progreso de trainingPipeline para ver cuándo finaliza.

Clasificación

Durante el entrenamiento, elige el siguiente tipo de AutoML Edge:

  • MOBILE_VERSATILE_1: Uso general

REST

Antes de usar cualquiera de los datos de solicitud a continuación, realiza los siguientes reemplazos:

  • PROJECT: El ID del proyecto.
  • LOCATION: Región en la que se encuentra el conjunto de datos y se crea el modelo. Por ejemplo, us-central1.
  • TRAINING_PIPELINE_DISPLAY_NAME: Obligatorio. Un nombre visible para TrainingPipeline.
  • DATASET_ID: ID del conjunto de datos de entrenamiento.
  • TRAINING_FRACTION, TEST_FRACTION: El objeto fractionSplit es opcional. La usas para controlar tu división de datos. Si deseas obtener más información a fin de controlar la división de datos, consulta Acerca de las divisiones de datos para los modelos de AutoML. Por ejemplo:
    • {"trainingFraction": "0.8","validationFraction": "0","testFraction": "0.2"}
  • MODEL_DISPLAY_NAME: Nombre visible del modelo entrenado
  • MODEL_DESCRIPTION: Es una descripción del modelo.
  • MODEL_LABELS: Cualquier conjunto de pares clave-valor para organizar los modelos. Por ejemplo:
    • "env": "prod"
    • "nivel": "backend"
  • EDGE_MODEL_TYPE:
    • MOBILE_VERSATILE_1: Uso general
  • PROJECT_NUMBER: El número de proyecto de tu proyecto generado de forma automática

Método HTTP y URL:

POST https://LOCATION-aiplatform.googleapis.com/beta1/projects/PROJECT/locations/LOCATION/trainingPipelines

Cuerpo JSON de la solicitud:

{
  "displayName": "TRAINING_PIPELINE_DISPLAY_NAME",
  "inputDataConfig": {
    "datasetId": "DATASET_ID",
    "fractionSplit": {
      "trainingFraction": "TRAINING_FRACTION",
      "validationFraction": "0",
      "testFraction": "TEST_FRACTION"
    }
  },
  "modelToUpload": {
    "displayName": "MODEL_DISPLAY_NAME",
    "description": "MODEL_DESCRIPTION",
    "labels": {
      "KEY": "VALUE"
    }
  },
  "trainingTaskDefinition": "gs://google-cloud-aiplatform/schema/trainingjob/definition/automl_video_classification_1.0.0.yaml",
  "trainingTaskInputs": {
    "modelType": ["EDGE_MODEL_TYPE"],
  }
}

Para enviar tu solicitud, elige una de estas opciones:

curl

Guarda el cuerpo de la solicitud en un archivo llamado request.json y ejecuta el siguiente comando:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/beta1/projects/PROJECT/locations/LOCATION/trainingPipelines"

PowerShell

Guarda el cuerpo de la solicitud en un archivo llamado request.json y ejecuta el siguiente comando:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/beta1/projects/PROJECT/locations/LOCATION/trainingPipelines" | Select-Object -Expand Content

La respuesta contiene información sobre las especificaciones y los TRAININGPIPELINE_ID.

Puedes obtener el estado del progreso de trainingPipeline para ver cuando finaliza.

Seguimiento de objetos

Durante el entrenamiento, elige el tipo de AutoML Edge:

  • MOBILE_VERSATILE_1: Uso general
  • MOBILE_CORAL_VERSATILE_1: Mayor calidad de predicción para Google Coral
  • MOBILE_CORAL_LOW_LATENCY_1: Menor latencia para Google Coral
  • MOBILE_JETSON_VERSATILE_1: Mayor calidad de predicción para NVIDIA Jetson
  • MOBILE_JETSON_LOW_LATENCY_1: Menor latencia para NVIDIA Jetson

REST

Antes de usar cualquiera de los datos de solicitud a continuación, realiza los siguientes reemplazos:

  • PROJECT: El ID del proyecto.
  • LOCATION: Región en la que se encuentra el conjunto de datos y se crea el modelo. Por ejemplo, us-central1.
  • TRAINING_PIPELINE_DISPLAY_NAME: Obligatorio. Un nombre visible para TrainingPipeline.
  • DATASET_ID: ID del conjunto de datos de entrenamiento.
  • TRAINING_FRACTION, TEST_FRACTION: El objeto fractionSplit es opcional. La usas para controlar tu división de datos. Si deseas obtener más información a fin de controlar la división de datos, consulta Acerca de las divisiones de datos para los modelos de AutoML. Por ejemplo:
    • {"trainingFraction": "0.8","validationFraction": "0","testFraction": "0.2"}
  • MODEL_DISPLAY_NAME: Nombre visible del modelo entrenado
  • MODEL_DESCRIPTION: Es una descripción del modelo.
  • MODEL_LABELS: Cualquier conjunto de pares clave-valor para organizar los modelos. Por ejemplo:
    • "env": "prod"
    • "nivel": "backend"
  • EDGE_MODEL_TYPE: Uno de los siguientes:
    • MOBILE_VERSATILE_1: Uso general
    • MOBILE_CORAL_VERSATILE_1: Mayor calidad de predicción para Google Coral
    • MOBILE_CORAL_LOW_LATENCY_1: Menor latencia para Google Coral
    • MOBILE_JETSON_VERSATILE_1: Mayor calidad de predicción para NVIDIA Jetson
    • MOBILE_JETSON_LOW_LATENCY_1: Menor latencia para NVIDIA Jetson
  • PROJECT_NUMBER: el número de proyecto de tu proyecto generado de forma automática.

Método HTTP y URL:

POST https://LOCATION-aiplatform.googleapis.com/beta1/projects/PROJECT/locations/LOCATION/trainingPipelines

Cuerpo JSON de la solicitud:

{
  "displayName": "TRAINING_PIPELINE_DISPLAY_NAME",
  "inputDataConfig": {
    "datasetId": "DATASET_ID",
    "fractionSplit": {
      "trainingFraction": "TRAINING_FRACTION",
      "validationFraction": "0",
      "testFraction": "TEST_FRACTION"
    }
  },
  "modelToUpload": {
    "displayName": "MODEL_DISPLAY_NAME",
    "description": "MODEL_DESCRIPTION",
    "labels": {
      "KEY": "VALUE"
    }
  },
  "trainingTaskDefinition": "gs://google-cloud-aiplatform/schema/trainingjob/definition/automl_video_object_tracking_1.0.0.yaml",
  "trainingTaskInputs": {
    "modelType": ["EDGE_MODEL_TYPE"],
  }
}

Para enviar tu solicitud, elige una de estas opciones:

curl

Guarda el cuerpo de la solicitud en un archivo llamado request.json y ejecuta el siguiente comando:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/beta1/projects/PROJECT/locations/LOCATION/trainingPipelines"

PowerShell

Guarda el cuerpo de la solicitud en un archivo llamado request.json y ejecuta el siguiente comando:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/beta1/projects/PROJECT/locations/LOCATION/trainingPipelines" | Select-Object -Expand Content

La respuesta contiene información sobre las especificaciones y los TRAININGPIPELINE_ID.

Puedes obtener el estado del progreso de trainingPipeline para ver cuando finaliza.

Obtén el estado de trainingPipeline

Usa el siguiente código para obtener el estado de creación de trainingPipeline de manera programática.

REST

Antes de usar cualquiera de los datos de solicitud a continuación, realiza los siguientes reemplazos:

  • LOCATION: La región en la que se encuentra TrainingPipeline.
  • PROJECT: El ID del proyecto.
  • TRAININGPIPELINE_ID: El ID de TrainingPipeline específica.
  • PROJECT_NUMBER: el número de proyecto de tu proyecto generado de forma automática.

HTTP method and URL:

GET https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/trainingPipelines/TRAININGPIPELINE_ID

Para enviar tu solicitud, elige una de estas opciones:

curl

Ejecuta el siguiente comando:

curl -X GET \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
"https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/trainingPipelines/TRAININGPIPELINE_ID"

PowerShell

Ejecuta el siguiente comando:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method GET `
-Headers $headers `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/trainingPipelines/TRAININGPIPELINE_ID" | Select-Object -Expand Content

El campo "state" muestra el estado actual de la operación. Se muestra una capacitación trainingPipeline completa

Deberías ver un resultado similar al siguiente para una operación de creación trainingPipeline completada:

Java

Antes de probar este ejemplo, sigue las instrucciones de configuración para Java incluidas en la guía de inicio rápido de Vertex AI sobre cómo usar bibliotecas cliente. Para obtener más información, consulta la documentación de referencia de la API de Vertex AI Java.

Para autenticarte en Vertex AI, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.


import com.google.cloud.aiplatform.v1.DeployedModelRef;
import com.google.cloud.aiplatform.v1.EnvVar;
import com.google.cloud.aiplatform.v1.FilterSplit;
import com.google.cloud.aiplatform.v1.FractionSplit;
import com.google.cloud.aiplatform.v1.InputDataConfig;
import com.google.cloud.aiplatform.v1.Model;
import com.google.cloud.aiplatform.v1.ModelContainerSpec;
import com.google.cloud.aiplatform.v1.PipelineServiceClient;
import com.google.cloud.aiplatform.v1.PipelineServiceSettings;
import com.google.cloud.aiplatform.v1.Port;
import com.google.cloud.aiplatform.v1.PredefinedSplit;
import com.google.cloud.aiplatform.v1.PredictSchemata;
import com.google.cloud.aiplatform.v1.TimestampSplit;
import com.google.cloud.aiplatform.v1.TrainingPipeline;
import com.google.cloud.aiplatform.v1.TrainingPipelineName;
import com.google.rpc.Status;
import java.io.IOException;

public class GetTrainingPipelineSample {
  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String project = "YOUR_PROJECT_ID";
    String trainingPipelineId = "YOUR_TRAINING_PIPELINE_ID";
    getTrainingPipeline(project, trainingPipelineId);
  }

  static void getTrainingPipeline(String project, String trainingPipelineId) throws IOException {
    PipelineServiceSettings pipelineServiceSettings =
        PipelineServiceSettings.newBuilder()
            .setEndpoint("us-central1-aiplatform.googleapis.com:443")
            .build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (PipelineServiceClient pipelineServiceClient =
        PipelineServiceClient.create(pipelineServiceSettings)) {
      String location = "us-central1";
      TrainingPipelineName trainingPipelineName =
          TrainingPipelineName.of(project, location, trainingPipelineId);

      TrainingPipeline trainingPipelineResponse =
          pipelineServiceClient.getTrainingPipeline(trainingPipelineName);

      System.out.println("Get Training Pipeline Response");
      System.out.format("\tName: %s\n", trainingPipelineResponse.getName());
      System.out.format("\tDisplay Name: %s\n", trainingPipelineResponse.getDisplayName());
      System.out.format(
          "\tTraining Task Definition: %s\n", trainingPipelineResponse.getTrainingTaskDefinition());
      System.out.format(
          "\tTraining Task Inputs: %s\n", trainingPipelineResponse.getTrainingTaskInputs());
      System.out.format(
          "\tTraining Task Metadata: %s\n", trainingPipelineResponse.getTrainingTaskMetadata());
      System.out.format("\tState: %s\n", trainingPipelineResponse.getState());
      System.out.format("\tCreate Time: %s\n", trainingPipelineResponse.getCreateTime());
      System.out.format("\tStart Time: %s\n", trainingPipelineResponse.getStartTime());
      System.out.format("\tEnd Time: %s\n", trainingPipelineResponse.getEndTime());
      System.out.format("\tUpdate Time: %s\n", trainingPipelineResponse.getUpdateTime());
      System.out.format("\tLabels: %s\n", trainingPipelineResponse.getLabelsMap());
      InputDataConfig inputDataConfig = trainingPipelineResponse.getInputDataConfig();

      System.out.println("\tInput Data Config");
      System.out.format("\t\tDataset Id: %s\n", inputDataConfig.getDatasetId());
      System.out.format("\t\tAnnotations Filter: %s\n", inputDataConfig.getAnnotationsFilter());
      FractionSplit fractionSplit = inputDataConfig.getFractionSplit();

      System.out.println("\t\tFraction Split");
      System.out.format("\t\t\tTraining Fraction: %s\n", fractionSplit.getTrainingFraction());
      System.out.format("\t\t\tValidation Fraction: %s\n", fractionSplit.getValidationFraction());
      System.out.format("\t\t\tTest Fraction: %s\n", fractionSplit.getTestFraction());
      FilterSplit filterSplit = inputDataConfig.getFilterSplit();

      System.out.println("\t\tFilter Split");
      System.out.format("\t\t\tTraining Filter: %s\n", filterSplit.getTrainingFilter());
      System.out.format("\t\t\tValidation Filter: %s\n", filterSplit.getValidationFilter());
      System.out.format("\t\t\tTest Filter: %s\n", filterSplit.getTestFilter());
      PredefinedSplit predefinedSplit = inputDataConfig.getPredefinedSplit();

      System.out.println("\t\tPredefined Split");
      System.out.format("\t\t\tKey: %s\n", predefinedSplit.getKey());
      TimestampSplit timestampSplit = inputDataConfig.getTimestampSplit();

      System.out.println("\t\tTimestamp Split");
      System.out.format("\t\t\tTraining Fraction: %s\n", timestampSplit.getTrainingFraction());
      System.out.format("\t\t\tTest Fraction: %s\n", timestampSplit.getTestFraction());
      System.out.format("\t\t\tValidation Fraction: %s\n", timestampSplit.getValidationFraction());
      System.out.format("\t\t\tKey: %s\n", timestampSplit.getKey());
      Model modelResponse = trainingPipelineResponse.getModelToUpload();

      System.out.println("\t\tModel to upload");
      System.out.format("\t\tName: %s\n", modelResponse.getName());
      System.out.format("\t\tDisplay Name: %s\n", modelResponse.getDisplayName());
      System.out.format("\t\tDescription: %s\n", modelResponse.getDescription());
      System.out.format("\t\tMetadata Schema Uri: %s\n", modelResponse.getMetadataSchemaUri());
      System.out.format("\t\tMeta Data: %s\n", modelResponse.getMetadata());
      System.out.format("\t\tTraining Pipeline: %s\n", modelResponse.getTrainingPipeline());
      System.out.format("\t\tArtifact Uri: %s\n", modelResponse.getArtifactUri());
      System.out.format(
          "\t\tSupported Deployment Resources Types: %s\n",
          modelResponse.getSupportedDeploymentResourcesTypesList().toString());
      System.out.format(
          "\t\tSupported Input Storage Formats: %s\n",
          modelResponse.getSupportedInputStorageFormatsList().toString());
      System.out.format(
          "\t\tSupported Output Storage Formats: %s\n",
          modelResponse.getSupportedOutputStorageFormatsList().toString());
      System.out.format("\t\tCreate Time: %s\n", modelResponse.getCreateTime());
      System.out.format("\t\tUpdate Time: %s\n", modelResponse.getUpdateTime());
      System.out.format("\t\tLabels: %s\n", modelResponse.getLabelsMap());
      PredictSchemata predictSchemata = modelResponse.getPredictSchemata();

      System.out.println("\tPredict Schemata");
      System.out.format("\t\tInstance Schema Uri: %s\n", predictSchemata.getInstanceSchemaUri());
      System.out.format(
          "\t\tParameters Schema Uri: %s\n", predictSchemata.getParametersSchemaUri());
      System.out.format(
          "\t\tPrediction Schema Uri: %s\n", predictSchemata.getPredictionSchemaUri());

      for (Model.ExportFormat supportedExportFormat :
          modelResponse.getSupportedExportFormatsList()) {
        System.out.println("\tSupported Export Format");
        System.out.format("\t\tId: %s\n", supportedExportFormat.getId());
      }
      ModelContainerSpec containerSpec = modelResponse.getContainerSpec();

      System.out.println("\tContainer Spec");
      System.out.format("\t\tImage Uri: %s\n", containerSpec.getImageUri());
      System.out.format("\t\tCommand: %s\n", containerSpec.getCommandList());
      System.out.format("\t\tArgs: %s\n", containerSpec.getArgsList());
      System.out.format("\t\tPredict Route: %s\n", containerSpec.getPredictRoute());
      System.out.format("\t\tHealth Route: %s\n", containerSpec.getHealthRoute());

      for (EnvVar envVar : containerSpec.getEnvList()) {
        System.out.println("\t\tEnv");
        System.out.format("\t\t\tName: %s\n", envVar.getName());
        System.out.format("\t\t\tValue: %s\n", envVar.getValue());
      }

      for (Port port : containerSpec.getPortsList()) {
        System.out.println("\t\tPort");
        System.out.format("\t\t\tContainer Port: %s\n", port.getContainerPort());
      }

      for (DeployedModelRef deployedModelRef : modelResponse.getDeployedModelsList()) {
        System.out.println("\tDeployed Model");
        System.out.format("\t\tEndpoint: %s\n", deployedModelRef.getEndpoint());
        System.out.format("\t\tDeployed Model Id: %s\n", deployedModelRef.getDeployedModelId());
      }

      Status status = trainingPipelineResponse.getError();
      System.out.println("\tError");
      System.out.format("\t\tCode: %s\n", status.getCode());
      System.out.format("\t\tMessage: %s\n", status.getMessage());
    }
  }
}

Python

Si deseas obtener información para instalar o actualizar el SDK de Vertex AI para Python, consulta Instala el SDK de Vertex AI para Python. Si deseas obtener más información, consulta la documentación de referencia de la API de Python.

from google.cloud import aiplatform


def get_training_pipeline_sample(
    project: str,
    training_pipeline_id: str,
    location: str = "us-central1",
    api_endpoint: str = "us-central1-aiplatform.googleapis.com",
):
    # The AI Platform services require regional API endpoints.
    client_options = {"api_endpoint": api_endpoint}
    # Initialize client that will be used to create and send requests.
    # This client only needs to be created once, and can be reused for multiple requests.
    client = aiplatform.gapic.PipelineServiceClient(client_options=client_options)
    name = client.training_pipeline_path(
        project=project, location=location, training_pipeline=training_pipeline_id
    )
    response = client.get_training_pipeline(name=name)
    print("response:", response)

Obtén información de modelos

Una vez que se completa la creación de trainingPipeline, puedes usar el nombre visible del modelo para obtener información más detallada.

REST

Antes de usar cualquiera de los datos de solicitud a continuación, realiza los siguientes reemplazos:

  • LOCATION: Región en la que se encuentra el modelo. Por ejemplo, us-central1
  • PROJECT: El ID del proyecto.
  • MODEL_DISPLAYNAME: El nombre visible de tu modelo que especificaste cuando creaste un trabajo de trainingPipeline.
  • PROJECT_NUMBER: el número de proyecto de tu proyecto generado de forma automática.

HTTP method and URL:

GET https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/models?filter=display_name=MODEL_DISPLAYNAME

Para enviar tu solicitud, elige una de estas opciones:

curl

Ejecuta el siguiente comando:

curl -X GET \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
"https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/models?filter=display_name=MODEL_DISPLAYNAME "

PowerShell

Ejecuta el siguiente comando:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method GET `
-Headers $headers `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/models?filter=display_name=MODEL_DISPLAYNAME " | Select-Object -Expand Content

Deberías ver un resultado similar al siguiente para un modelo de AutoML Edge entrenado. El resultado de muestra siguiente es para un modelo de AutoML Edge de imagen:

Java

Antes de probar este ejemplo, sigue las instrucciones de configuración para Java incluidas en la guía de inicio rápido de Vertex AI sobre cómo usar bibliotecas cliente. Para obtener más información, consulta la documentación de referencia de la API de Vertex AI Java.

Para autenticarte en Vertex AI, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.


import com.google.cloud.aiplatform.v1.DeployedModelRef;
import com.google.cloud.aiplatform.v1.EnvVar;
import com.google.cloud.aiplatform.v1.Model;
import com.google.cloud.aiplatform.v1.Model.ExportFormat;
import com.google.cloud.aiplatform.v1.ModelContainerSpec;
import com.google.cloud.aiplatform.v1.ModelName;
import com.google.cloud.aiplatform.v1.ModelServiceClient;
import com.google.cloud.aiplatform.v1.ModelServiceSettings;
import com.google.cloud.aiplatform.v1.Port;
import com.google.cloud.aiplatform.v1.PredictSchemata;
import java.io.IOException;

public class GetModelSample {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String project = "YOUR_PROJECT_ID";
    String modelId = "YOUR_MODEL_ID";
    getModelSample(project, modelId);
  }

  static void getModelSample(String project, String modelId) throws IOException {
    ModelServiceSettings modelServiceSettings =
        ModelServiceSettings.newBuilder()
            .setEndpoint("us-central1-aiplatform.googleapis.com:443")
            .build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (ModelServiceClient modelServiceClient = ModelServiceClient.create(modelServiceSettings)) {
      String location = "us-central1";
      ModelName modelName = ModelName.of(project, location, modelId);

      Model modelResponse = modelServiceClient.getModel(modelName);
      System.out.println("Get Model response");
      System.out.format("\tName: %s\n", modelResponse.getName());
      System.out.format("\tDisplay Name: %s\n", modelResponse.getDisplayName());
      System.out.format("\tDescription: %s\n", modelResponse.getDescription());

      System.out.format("\tMetadata Schema Uri: %s\n", modelResponse.getMetadataSchemaUri());
      System.out.format("\tMetadata: %s\n", modelResponse.getMetadata());
      System.out.format("\tTraining Pipeline: %s\n", modelResponse.getTrainingPipeline());
      System.out.format("\tArtifact Uri: %s\n", modelResponse.getArtifactUri());

      System.out.format(
          "\tSupported Deployment Resources Types: %s\n",
          modelResponse.getSupportedDeploymentResourcesTypesList());
      System.out.format(
          "\tSupported Input Storage Formats: %s\n",
          modelResponse.getSupportedInputStorageFormatsList());
      System.out.format(
          "\tSupported Output Storage Formats: %s\n",
          modelResponse.getSupportedOutputStorageFormatsList());

      System.out.format("\tCreate Time: %s\n", modelResponse.getCreateTime());
      System.out.format("\tUpdate Time: %s\n", modelResponse.getUpdateTime());
      System.out.format("\tLabels: %s\n", modelResponse.getLabelsMap());

      PredictSchemata predictSchemata = modelResponse.getPredictSchemata();
      System.out.println("\tPredict Schemata");
      System.out.format("\t\tInstance Schema Uri: %s\n", predictSchemata.getInstanceSchemaUri());
      System.out.format(
          "\t\tParameters Schema Uri: %s\n", predictSchemata.getParametersSchemaUri());
      System.out.format(
          "\t\tPrediction Schema Uri: %s\n", predictSchemata.getPredictionSchemaUri());

      for (ExportFormat exportFormat : modelResponse.getSupportedExportFormatsList()) {
        System.out.println("\tSupported Export Format");
        System.out.format("\t\tId: %s\n", exportFormat.getId());
      }

      ModelContainerSpec containerSpec = modelResponse.getContainerSpec();
      System.out.println("\tContainer Spec");
      System.out.format("\t\tImage Uri: %s\n", containerSpec.getImageUri());
      System.out.format("\t\tCommand: %s\n", containerSpec.getCommandList());
      System.out.format("\t\tArgs: %s\n", containerSpec.getArgsList());
      System.out.format("\t\tPredict Route: %s\n", containerSpec.getPredictRoute());
      System.out.format("\t\tHealth Route: %s\n", containerSpec.getHealthRoute());

      for (EnvVar envVar : containerSpec.getEnvList()) {
        System.out.println("\t\tEnv");
        System.out.format("\t\t\tName: %s\n", envVar.getName());
        System.out.format("\t\t\tValue: %s\n", envVar.getValue());
      }

      for (Port port : containerSpec.getPortsList()) {
        System.out.println("\t\tPort");
        System.out.format("\t\t\tContainer Port: %s\n", port.getContainerPort());
      }

      for (DeployedModelRef deployedModelRef : modelResponse.getDeployedModelsList()) {
        System.out.println("\tDeployed Model");
        System.out.format("\t\tEndpoint: %s\n", deployedModelRef.getEndpoint());
        System.out.format("\t\tDeployed Model Id: %s\n", deployedModelRef.getDeployedModelId());
      }
    }
  }
}

Node.js

Antes de probar este ejemplo, sigue las instrucciones de configuración para Node.js incluidas en la guía de inicio rápido de Vertex AI sobre cómo usar bibliotecas cliente. Para obtener más información, consulta la documentación de referencia de la API de Vertex AI Node.js.

Para autenticarte en Vertex AI, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.

/**
 * TODO(developer): Uncomment these variables before running the sample.\
 * (Not necessary if passing values as arguments)
 */

// const modelId = 'YOUR_MODEL_ID';
// const project = 'YOUR_PROJECT_ID';
// const location = 'YOUR_PROJECT_LOCATION';

// Imports the Google Cloud Model Service Client library
const {ModelServiceClient} = require('@google-cloud/aiplatform');

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: 'us-central1-aiplatform.googleapis.com',
};

// Instantiates a client
const modelServiceClient = new ModelServiceClient(clientOptions);

async function getModel() {
  // Configure the parent resource
  const name = `projects/${project}/locations/${location}/models/${modelId}`;
  const request = {
    name,
  };
  // Get and print out a list of all the endpoints for this resource
  const [response] = await modelServiceClient.getModel(request);

  console.log('Get model response');
  console.log(`\tName : ${response.name}`);
  console.log(`\tDisplayName : ${response.displayName}`);
  console.log(`\tDescription : ${response.description}`);
  console.log(`\tMetadata schema uri : ${response.metadataSchemaUri}`);
  console.log(`\tMetadata : ${JSON.stringify(response.metadata)}`);
  console.log(`\tTraining pipeline : ${response.trainingPipeline}`);
  console.log(`\tArtifact uri : ${response.artifactUri}`);
  console.log(
    `\tSupported deployment resource types : \
      ${response.supportedDeploymentResourceTypes}`
  );
  console.log(
    `\tSupported input storage formats : \
      ${response.supportedInputStorageFormats}`
  );
  console.log(
    `\tSupported output storage formats : \
      ${response.supportedOutputStoragFormats}`
  );
  console.log(`\tCreate time : ${JSON.stringify(response.createTime)}`);
  console.log(`\tUpdate time : ${JSON.stringify(response.updateTime)}`);
  console.log(`\tLabels : ${JSON.stringify(response.labels)}`);

  const predictSchemata = response.predictSchemata;
  console.log('\tPredict schemata');
  console.log(`\tInstance schema uri : ${predictSchemata.instanceSchemaUri}`);
  console.log(
    `\tParameters schema uri : ${predictSchemata.prametersSchemaUri}`
  );
  console.log(
    `\tPrediction schema uri : ${predictSchemata.predictionSchemaUri}`
  );

  const [supportedExportFormats] = response.supportedExportFormats;
  console.log('\tSupported export formats');
  console.log(`\t${supportedExportFormats}`);

  const containerSpec = response.containerSpec;
  console.log('\tContainer Spec');
  if (!containerSpec) {
    console.log(`\t\t${JSON.stringify(containerSpec)}`);
    console.log('\t\tImage uri : {}');
    console.log('\t\tCommand : {}');
    console.log('\t\tArgs : {}');
    console.log('\t\tPredict route : {}');
    console.log('\t\tHealth route : {}');
    console.log('\t\tEnv');
    console.log('\t\t\t{}');
    console.log('\t\tPort');
    console.log('\t\t{}');
  } else {
    console.log(`\t\t${JSON.stringify(containerSpec)}`);
    console.log(`\t\tImage uri : ${containerSpec.imageUri}`);
    console.log(`\t\tCommand : ${containerSpec.command}`);
    console.log(`\t\tArgs : ${containerSpec.args}`);
    console.log(`\t\tPredict route : ${containerSpec.predictRoute}`);
    console.log(`\t\tHealth route : ${containerSpec.healthRoute}`);
    const env = containerSpec.env;
    console.log('\t\tEnv');
    console.log(`\t\t\t${JSON.stringify(env)}`);
    const ports = containerSpec.ports;
    console.log('\t\tPort');
    console.log(`\t\t\t${JSON.stringify(ports)}`);
  }

  const [deployedModels] = response.deployedModels;
  console.log('\tDeployed models');
  console.log('\t\t', deployedModels);
}
getModel();

Python

Si deseas obtener información para instalar o actualizar el SDK de Vertex AI para Python, consulta Instala el SDK de Vertex AI para Python. Si deseas obtener más información, consulta la documentación de referencia de la API de Python.

def get_model_sample(project: str, location: str, model_name: str):

    aiplatform.init(project=project, location=location)

    model = aiplatform.Model(model_name=model_name)

    print(model.display_name)
    print(model.resource_name)
    return model

¿Qué sigue?