Crie um conjunto de dados para preparar modelos de previsão

Esta página mostra-lhe como criar um conjunto de dados do Vertex AI a partir dos seus dados tabulares para que possa começar a preparar modelos de previsão. Pode criar um conjunto de dados através da Google Cloud consola ou da API Vertex AI.

Antes de começar

Antes de criar um conjunto de dados do Vertex AI a partir dos seus dados tabulares, prepare os seus dados de preparação.

Crie um conjunto de dados vazio e associe os dados preparados

Para criar um modelo de aprendizagem automática para previsões, tem de ter uma recolha representativa de dados para usar na preparação. Use a Google Cloud consola ou a API para associar os dados preparados ao conjunto de dados.

Quando cria um conjunto de dados, também o associa à respetiva origem de dados. Os dados de preparação podem ser um ficheiro CSV no Cloud Storage ou uma tabela no BigQuery. Se a origem de dados residir num projeto diferente, certifique-se de que configura as autorizações necessárias.

Google Cloud consola

  1. Na Google Cloud consola, na secção Vertex AI, aceda à página Conjuntos de dados.

    Aceda à página Conjuntos de dados

  2. Clique em Criar para abrir a página de detalhes de criação do conjunto de dados.
  3. Modifique o campo Nome do conjunto de dados para criar um nome a apresentar descritivo do conjunto de dados.
  4. Selecione o separador Tabelar.
  5. Selecione o objetivo Previsão.
  6. Selecione uma região na lista pendente Região.
  7. Clique em Criar para criar o conjunto de dados vazio e avançar para o separador Origem.
  8. Escolha uma das seguintes opções, com base na sua origem de dados.

    Ficheiros CSV no seu computador

    1. Clique em Carregar ficheiros CSV do seu computador.
    2. Clique em Selecionar ficheiros e escolha todos os ficheiros locais a carregar para um contentor do Cloud Storage.
    3. Na secção Selecione um caminho do Cloud Storage, introduza o caminho para o contentor do Cloud Storage ou clique em Procurar para escolher uma localização do contentor.

    Ficheiros CSV no Cloud Storage

    1. Clique em Selecionar ficheiros CSV do Cloud Storage.
    2. Na secção Selecione ficheiros CSV do Cloud Storage, introduza o caminho para o contentor do Cloud Storage ou clique em Procurar para escolher a localização dos seus ficheiros CSV.

    Uma tabela ou uma vista no BigQuery

    1. Clique em Selecionar uma tabela ou uma vista do BigQuery.
    2. Introduza os IDs do projeto, do conjunto de dados e da tabela para o seu ficheiro de entrada.
  9. Clique em Continuar.

    A origem de dados está associada ao conjunto de dados.

  10. No separador Analisar, especifique a coluna Data/hora e a coluna Identificador da série para este conjunto de dados.

    Também pode especificar estas colunas quando prepara o modelo, mas, geralmente, um conjunto de dados de previsão tem colunas de identificador de tempo e de série cronológica específicas, pelo que especificá-las no conjunto de dados é uma prática recomendada.

API : CSV

REST

Use o método datasets.create para criar um conjunto de dados.

Antes de usar qualquer um dos dados do pedido, faça as seguintes substituições:

  • LOCATION: região onde o conjunto de dados vai ser armazenado. Tem de ser uma região que suporte recursos de conjuntos de dados. Por exemplo, us-central1.
  • PROJECT: o seu ID do projeto.
  • DATASET_NAME: nome a apresentar do conjunto de dados.
  • METADATA_SCHEMA_URI: o URI para o ficheiro de esquema do seu objetivo. gs://google-cloud-aiplatform/schema/dataset/metadata/time_series_1.0.0.yaml
  • URI: caminhos (URIs) para os contentores do Cloud Storage que contêm os dados de preparação. Pode haver mais do que um. Cada URI tem o formato:
    gs://GCSprojectId/bucketName/fileName
    
  • PROJECT_NUMBER: o número do projeto gerado automaticamente para o seu projeto.

Método HTTP e URL:

POST https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/datasets

Corpo JSON do pedido:

{
  "display_name": "DATASET_NAME",
  "metadata_schema_uri": "METADATA_SCHEMA_URI",
  "metadata": {
    "input_config": {
      "gcs_source": {
        "uri": [URI1, URI2, ...]
      }
    }
  }
}

Para enviar o seu pedido, escolha uma destas opções:

curl

Guarde o corpo do pedido num ficheiro com o nome request.json, e execute o seguinte comando:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/datasets"

PowerShell

Guarde o corpo do pedido num ficheiro com o nome request.json, e execute o seguinte comando:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/datasets" | Select-Object -Expand Content

Deve receber uma resposta JSON semelhante à seguinte:

{
  "name": "projects/PROJECT_NUMBER/locations/LOCATION/datasets/DATASET_ID/operations/OPERATION_ID",
  "metadata": {
    "@type": "type.googleapis.com/google.cloud.aiplatform.v1.CreateDatasetOperationMetadata",
    "genericMetadata": {
      "createTime": "2020-07-07T21:27:35.964882Z",
      "updateTime": "2020-07-07T21:27:35.964882Z"
    }
}

Java

Antes de experimentar este exemplo, siga as Javainstruções de configuração no início rápido do Vertex AI com bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Java Vertex AI.

Para se autenticar no Vertex AI, configure as Credenciais padrão da aplicação. Para mais informações, consulte o artigo Configure a autenticação para um ambiente de desenvolvimento local.


import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.aiplatform.v1.CreateDatasetOperationMetadata;
import com.google.cloud.aiplatform.v1.Dataset;
import com.google.cloud.aiplatform.v1.DatasetServiceClient;
import com.google.cloud.aiplatform.v1.DatasetServiceSettings;
import com.google.cloud.aiplatform.v1.LocationName;
import com.google.protobuf.Value;
import com.google.protobuf.util.JsonFormat;
import java.io.IOException;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;

public class CreateDatasetTabularGcsSample {

  public static void main(String[] args)
      throws InterruptedException, ExecutionException, TimeoutException, IOException {
    // TODO(developer): Replace these variables before running the sample.
    String project = "YOUR_PROJECT_ID";
    String datasetDisplayName = "YOUR_DATASET_DISPLAY_NAME";
    String gcsSourceUri = "gs://YOUR_GCS_SOURCE_BUCKET/path_to_your_gcs_table/file.csv";
    ;
    createDatasetTableGcs(project, datasetDisplayName, gcsSourceUri);
  }

  static void createDatasetTableGcs(String project, String datasetDisplayName, String gcsSourceUri)
      throws IOException, ExecutionException, InterruptedException, TimeoutException {
    DatasetServiceSettings settings =
        DatasetServiceSettings.newBuilder()
            .setEndpoint("us-central1-aiplatform.googleapis.com:443")
            .build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (DatasetServiceClient datasetServiceClient = DatasetServiceClient.create(settings)) {
      String location = "us-central1";
      String metadataSchemaUri =
          "gs://google-cloud-aiplatform/schema/dataset/metadata/tables_1.0.0.yaml";
      LocationName locationName = LocationName.of(project, location);

      String jsonString =
          "{\"input_config\": {\"gcs_source\": {\"uri\": [\"" + gcsSourceUri + "\"]}}}";
      Value.Builder metaData = Value.newBuilder();
      JsonFormat.parser().merge(jsonString, metaData);

      Dataset dataset =
          Dataset.newBuilder()
              .setDisplayName(datasetDisplayName)
              .setMetadataSchemaUri(metadataSchemaUri)
              .setMetadata(metaData)
              .build();

      OperationFuture<Dataset, CreateDatasetOperationMetadata> datasetFuture =
          datasetServiceClient.createDatasetAsync(locationName, dataset);
      System.out.format("Operation name: %s\n", datasetFuture.getInitialFuture().get().getName());
      System.out.println("Waiting for operation to finish...");
      Dataset datasetResponse = datasetFuture.get(300, TimeUnit.SECONDS);

      System.out.println("Create Dataset Table GCS sample");
      System.out.format("Name: %s\n", datasetResponse.getName());
      System.out.format("Display Name: %s\n", datasetResponse.getDisplayName());
      System.out.format("Metadata Schema Uri: %s\n", datasetResponse.getMetadataSchemaUri());
      System.out.format("Metadata: %s\n", datasetResponse.getMetadata());
    }
  }
}

Node.js

Antes de experimentar este exemplo, siga as Node.jsinstruções de configuração no início rápido do Vertex AI com bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Node.js Vertex AI.

Para se autenticar no Vertex AI, configure as Credenciais padrão da aplicação. Para mais informações, consulte o artigo Configure a autenticação para um ambiente de desenvolvimento local.

/**
 * TODO(developer): Uncomment these variables before running the sample.\
 * (Not necessary if passing values as arguments)
 */

// const datasetDisplayName = 'YOUR_DATASET_DISPLAY_NAME';
// const gcsSourceUri = 'YOUR_GCS_SOURCE_URI';
// const project = 'YOUR_PROJECT_ID';
// const location = 'YOUR_PROJECT_LOCATION';

// Imports the Google Cloud Dataset Service Client library
const {DatasetServiceClient} = require('@google-cloud/aiplatform');

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: 'us-central1-aiplatform.googleapis.com',
};

// Instantiates a client
const datasetServiceClient = new DatasetServiceClient(clientOptions);

async function createDatasetTabularGcs() {
  // Configure the parent resource
  const parent = `projects/${project}/locations/${location}`;
  const metadata = {
    structValue: {
      fields: {
        inputConfig: {
          structValue: {
            fields: {
              gcsSource: {
                structValue: {
                  fields: {
                    uri: {
                      listValue: {
                        values: [{stringValue: gcsSourceUri}],
                      },
                    },
                  },
                },
              },
            },
          },
        },
      },
    },
  };
  // Configure the dataset resource
  const dataset = {
    displayName: datasetDisplayName,
    metadataSchemaUri:
      'gs://google-cloud-aiplatform/schema/dataset/metadata/tabular_1.0.0.yaml',
    metadata: metadata,
  };
  const request = {
    parent,
    dataset,
  };

  // Create dataset request
  const [response] = await datasetServiceClient.createDataset(request);
  console.log(`Long running operation : ${response.name}`);

  // Wait for operation to complete
  await response.promise();
  const result = response.result;

  console.log('Create dataset tabular gcs response');
  console.log(`\tName : ${result.name}`);
  console.log(`\tDisplay name : ${result.displayName}`);
  console.log(`\tMetadata schema uri : ${result.metadataSchemaUri}`);
  console.log(`\tMetadata : ${JSON.stringify(result.metadata)}`);
}
createDatasetTabularGcs();

Python

Para saber como instalar ou atualizar o SDK Vertex AI para Python, consulte o artigo Instale o SDK Vertex AI para Python. Para mais informações, consulte a Python documentação de referência da API.

def create_and_import_dataset_time_series_gcs_sample(
    display_name: str,
    project: str,
    location: str,
    gcs_source: Union[str, List[str]],
):

    aiplatform.init(project=project, location=location)

    dataset = aiplatform.TimeSeriesDataset.create(
        display_name=display_name,
        gcs_source=gcs_source,
    )

    dataset.wait()

    print(f'\tDataset: "{dataset.display_name}"')
    print(f'\tname: "{dataset.resource_name}"')

API : BigQuery

REST

Use o método datasets.create para criar um conjunto de dados.

Antes de usar qualquer um dos dados do pedido, faça as seguintes substituições:

  • LOCATION: região onde o conjunto de dados vai ser armazenado. Tem de ser uma região que suporte recursos de conjuntos de dados. Por exemplo, us-central1.
  • PROJECT: .
  • DATASET_NAME: nome a apresentar do conjunto de dados.
  • METADATA_SCHEMA_URI: o URI para o ficheiro de esquema do seu objetivo. gs://google-cloud-aiplatform/schema/dataset/metadata/time_series_1.0.0.yaml
  • URI: Caminho para a tabela do BigQuery que contém os dados de preparação. No formulário:
    bq://bqprojectId.bqDatasetId.bqTableId
    
  • PROJECT_NUMBER: o número do projeto gerado automaticamente para o seu projeto.

Método HTTP e URL:

POST https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/datasets

Corpo JSON do pedido:

{
  "display_name": "DATASET_NAME",
  "metadata_schema_uri": "METADATA_SCHEMA_URI",
  "metadata": {
    "input_config": {
      "bigquery_source" :{
        "uri": "URI
      }
    }
  }
}

Para enviar o seu pedido, escolha uma destas opções:

curl

Guarde o corpo do pedido num ficheiro com o nome request.json, e execute o seguinte comando:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/datasets"

PowerShell

Guarde o corpo do pedido num ficheiro com o nome request.json, e execute o seguinte comando:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT/locations/LOCATION/datasets" | Select-Object -Expand Content

Deve receber uma resposta JSON semelhante à seguinte:

{
  "name": "projects/PROJECT_NUMBER/locations/LOCATION/datasets/DATASET_ID/operations/OPERATION_ID",
  "metadata": {
    "@type": "type.googleapis.com/google.cloud.aiplatform.v1.CreateDatasetOperationMetadata",
    "genericMetadata": {
      "createTime": "2020-07-07T21:27:35.964882Z",
      "updateTime": "2020-07-07T21:27:35.964882Z"
    }
}

Java

Antes de experimentar este exemplo, siga as Javainstruções de configuração no início rápido do Vertex AI com bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Java Vertex AI.

Para se autenticar no Vertex AI, configure as Credenciais padrão da aplicação. Para mais informações, consulte o artigo Configure a autenticação para um ambiente de desenvolvimento local.


import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.aiplatform.v1.CreateDatasetOperationMetadata;
import com.google.cloud.aiplatform.v1.Dataset;
import com.google.cloud.aiplatform.v1.DatasetServiceClient;
import com.google.cloud.aiplatform.v1.DatasetServiceSettings;
import com.google.cloud.aiplatform.v1.LocationName;
import com.google.protobuf.Value;
import com.google.protobuf.util.JsonFormat;
import java.io.IOException;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;

public class CreateDatasetTabularBigquerySample {

  public static void main(String[] args)
      throws InterruptedException, ExecutionException, TimeoutException, IOException {
    // TODO(developer): Replace these variables before running the sample.
    String project = "YOUR_PROJECT_ID";
    String bigqueryDisplayName = "YOUR_DATASET_DISPLAY_NAME";
    String bigqueryUri =
        "bq://YOUR_GOOGLE_CLOUD_PROJECT_ID.BIGQUERY_DATASET_ID.BIGQUERY_TABLE_OR_VIEW_ID";
    createDatasetTableBigquery(project, bigqueryDisplayName, bigqueryUri);
  }

  static void createDatasetTableBigquery(
      String project, String bigqueryDisplayName, String bigqueryUri)
      throws IOException, ExecutionException, InterruptedException, TimeoutException {
    DatasetServiceSettings settings =
        DatasetServiceSettings.newBuilder()
            .setEndpoint("us-central1-aiplatform.googleapis.com:443")
            .build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (DatasetServiceClient datasetServiceClient = DatasetServiceClient.create(settings)) {
      String location = "us-central1";
      String metadataSchemaUri =
          "gs://google-cloud-aiplatform/schema/dataset/metadata/tables_1.0.0.yaml";
      LocationName locationName = LocationName.of(project, location);

      String jsonString =
          "{\"input_config\": {\"bigquery_source\": {\"uri\": \"" + bigqueryUri + "\"}}}";
      Value.Builder metaData = Value.newBuilder();
      JsonFormat.parser().merge(jsonString, metaData);

      Dataset dataset =
          Dataset.newBuilder()
              .setDisplayName(bigqueryDisplayName)
              .setMetadataSchemaUri(metadataSchemaUri)
              .setMetadata(metaData)
              .build();

      OperationFuture<Dataset, CreateDatasetOperationMetadata> datasetFuture =
          datasetServiceClient.createDatasetAsync(locationName, dataset);
      System.out.format("Operation name: %s\n", datasetFuture.getInitialFuture().get().getName());
      System.out.println("Waiting for operation to finish...");
      Dataset datasetResponse = datasetFuture.get(300, TimeUnit.SECONDS);

      System.out.println("Create Dataset Table Bigquery sample");
      System.out.format("Name: %s\n", datasetResponse.getName());
      System.out.format("Display Name: %s\n", datasetResponse.getDisplayName());
      System.out.format("Metadata Schema Uri: %s\n", datasetResponse.getMetadataSchemaUri());
      System.out.format("Metadata: %s\n", datasetResponse.getMetadata());
    }
  }
}

Node.js

Antes de experimentar este exemplo, siga as Node.jsinstruções de configuração no início rápido do Vertex AI com bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Node.js Vertex AI.

Para se autenticar no Vertex AI, configure as Credenciais padrão da aplicação. Para mais informações, consulte o artigo Configure a autenticação para um ambiente de desenvolvimento local.

/**
 * TODO(developer): Uncomment these variables before running the sample.\
 * (Not necessary if passing values as arguments)
 */

// const datasetDisplayName = 'YOUR_DATASET_DISPLAY_NAME';
// const bigquerySourceUri = 'YOUR_BIGQUERY_SOURCE_URI';
// const project = 'YOUR_PROJECT_ID';
// const location = 'YOUR_PROJECT_LOCATION';

// Imports the Google Cloud Dataset Service Client library
const {DatasetServiceClient} = require('@google-cloud/aiplatform');

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: 'us-central1-aiplatform.googleapis.com',
};

// Instantiates a client
const datasetServiceClient = new DatasetServiceClient(clientOptions);

async function createDatasetTabularBigquery() {
  // Configure the parent resource
  const parent = `projects/${project}/locations/${location}`;
  const metadata = {
    structValue: {
      fields: {
        inputConfig: {
          structValue: {
            fields: {
              bigquerySource: {
                structValue: {
                  fields: {
                    uri: {
                      listValue: {
                        values: [{stringValue: bigquerySourceUri}],
                      },
                    },
                  },
                },
              },
            },
          },
        },
      },
    },
  };
  // Configure the dataset resource
  const dataset = {
    displayName: datasetDisplayName,
    metadataSchemaUri:
      'gs://google-cloud-aiplatform/schema/dataset/metadata/tabular_1.0.0.yaml',
    metadata: metadata,
  };
  const request = {
    parent,
    dataset,
  };

  // Create dataset request
  const [response] = await datasetServiceClient.createDataset(request);
  console.log(`Long running operation : ${response.name}`);

  // Wait for operation to complete
  await response.promise();
  const result = response.result;

  console.log('Create dataset tabular bigquery response');
  console.log(`\tName : ${result.name}`);
  console.log(`\tDisplay name : ${result.displayName}`);
  console.log(`\tMetadata schema uri : ${result.metadataSchemaUri}`);
  console.log(`\tMetadata : ${JSON.stringify(result.metadata)}`);
}
createDatasetTabularBigquery();

Python

Para saber como instalar ou atualizar o SDK Vertex AI para Python, consulte o artigo Instale o SDK Vertex AI para Python. Para mais informações, consulte a Python documentação de referência da API.

def create_and_import_dataset_time_series_bigquery_sample(
    display_name: str,
    project: str,
    location: str,
    bigquery_source: str,
):

    aiplatform.init(project=project, location=location)

    dataset = aiplatform.TimeSeriesDataset.create(
        display_name=display_name,
        bigquery_source=bigquery_source,
    )

    dataset.wait()

    print(f'\tDataset: "{dataset.display_name}"')
    print(f'\tname: "{dataset.resource_name}"')

Obtenha o estado da operação

Alguns pedidos iniciam operações de longa duração que requerem tempo para serem concluídas. Estes pedidos devolvem um nome da operação, que pode usar para ver o estado da operação ou cancelar a operação. A Vertex AI fornece métodos auxiliares para fazer chamadas contra operações de longa duração. Para mais informações, consulte o artigo Trabalhar com operações de longa duração.

O que se segue?