바이러니 분류 모델은 이진 결과(2개 클래스 중 하나)를 예측합니다. 예 또는 아니요로 답할 수 있는 질문인 경우 이 모델 유형을 사용하세요. 예를 들어 고객이 구독을 구매할지 여부를 예측하는 이진 분류 모델을 빌드할 수 있습니다. 일반적으로 이진 분류 문제는 다른 모델 유형에 비해 적은 데이터가 필요합니다.
다중 클래스 분류 모델은 3개 이상의 개별 클래스 중 하나를 예측합니다. 분류에 이 모델 유형을 사용합니다. 예를 들어 소매업체의 경우 다중 클래스 분류 모델을 빌드하여 고객을 여러 페르소나로 구분할 수 있습니다.
회귀 모델은 연속된 값을 예측합니다. 예를 들어 소매업체의 경우 회귀 모델을 빌드하여 고객이 다음 달에 지출할 비용을 예측할 수 있습니다.
[[["이해하기 쉬움","easyToUnderstand","thumb-up"],["문제가 해결됨","solvedMyProblem","thumb-up"],["기타","otherUp","thumb-up"]],[["이해하기 어려움","hardToUnderstand","thumb-down"],["잘못된 정보 또는 샘플 코드","incorrectInformationOrSampleCode","thumb-down"],["필요한 정보/샘플이 없음","missingTheInformationSamplesINeed","thumb-down"],["번역 문제","translationIssue","thumb-down"],["기타","otherDown","thumb-down"]],[],[],[],null,["# Classification and regression overview\n\n**Binary classification** models predict a binary outcome (one of\ntwo classes). Use this model type for yes or no questions. For example, you might want\nto build a binary classification model to predict whether a customer would\nbuy a subscription. Generally, a binary classification\nproblem requires less data than other model types.\n\n\n**Multi-class classification** models predict one class from three\nor more discrete classes. Use this model type for categorization. For example, as a\nretailer, you might want to build a multi-class classification model to segment\ncustomers into different personas.\n\n\n**Regression** models predict a continuous value. For example, as a retailer,\nyou might want to build a regression model to predict how much a\ncustomer will spend next month.\n\nWorkflow for creating a classification or regression model and making inferences\n--------------------------------------------------------------------------------\n\nThe process for creating a classification or regression model in\nVertex AI is as follows:\n\n| To see an example of how to create, train, and use an AutoML\n| classification model for online predictions,\n| run the \"AutoML tabular training and prediction\" notebook in one of the following\n| environments:\n|\n| [Open in Colab](https://colab.research.google.com/github/GoogleCloudPlatform/vertex-ai-samples/blob/main/notebooks/official/automl/automl-tabular-classification.ipynb)\n|\n|\n| \\|\n|\n| [Open in Colab Enterprise](https://console.cloud.google.com/vertex-ai/colab/import/https%3A%2F%2Fraw.githubusercontent.com%2FGoogleCloudPlatform%2Fvertex-ai-samples%2Fmain%2Fnotebooks%2Fofficial%2Fautoml%2Fautoml-tabular-classification.ipynb)\n|\n|\n| \\|\n|\n| [Open\n| in Vertex AI Workbench](https://console.cloud.google.com/vertex-ai/workbench/deploy-notebook?download_url=https%3A%2F%2Fraw.githubusercontent.com%2FGoogleCloudPlatform%2Fvertex-ai-samples%2Fmain%2Fnotebooks%2Fofficial%2Fautoml%2Fautoml-tabular-classification.ipynb)\n|\n|\n| \\|\n|\n[View on GitHub](https://github.com/GoogleCloudPlatform/vertex-ai-samples/blob/main/notebooks/official/automl/automl-tabular-classification.ipynb) \n| To see an example of how to create, train, and use an AutoML\n| regression model for batch predictions,\n| run the \"AutoML training tabular regression model for batch prediction using BigQuery\" notebook in one of the following\n| environments:\n|\n| [Open in Colab](https://colab.research.google.com/github/GoogleCloudPlatform/vertex-ai-samples/blob/main/notebooks/official/automl/sdk_automl_tabular_regression_batch_bq.ipynb)\n|\n|\n| \\|\n|\n| [Open in Colab Enterprise](https://console.cloud.google.com/vertex-ai/colab/import/https%3A%2F%2Fraw.githubusercontent.com%2FGoogleCloudPlatform%2Fvertex-ai-samples%2Fmain%2Fnotebooks%2Fofficial%2Fautoml%2Fsdk_automl_tabular_regression_batch_bq.ipynb)\n|\n|\n| \\|\n|\n| [Open\n| in Vertex AI Workbench](https://console.cloud.google.com/vertex-ai/workbench/deploy-notebook?download_url=https%3A%2F%2Fraw.githubusercontent.com%2FGoogleCloudPlatform%2Fvertex-ai-samples%2Fmain%2Fnotebooks%2Fofficial%2Fautoml%2Fsdk_automl_tabular_regression_batch_bq.ipynb)\n|\n|\n| \\|\n|\n[View on GitHub](https://github.com/GoogleCloudPlatform/vertex-ai-samples/blob/main/notebooks/official/automl/sdk_automl_tabular_regression_batch_bq.ipynb) \n| To see an example of how to create, train, and use an AutoML\n| regression model for online predictions,\n| run the \"AutoML training tabular regression model for online prediction using BigQuery\" notebook in one of the following\n| environments:\n|\n| [Open in Colab](https://colab.research.google.com/github/GoogleCloudPlatform/vertex-ai-samples/blob/main/notebooks/official/automl/sdk_automl_tabular_regression_online_bq.ipynb)\n|\n|\n| \\|\n|\n| [Open in Colab Enterprise](https://console.cloud.google.com/vertex-ai/colab/import/https%3A%2F%2Fraw.githubusercontent.com%2FGoogleCloudPlatform%2Fvertex-ai-samples%2Fmain%2Fnotebooks%2Fofficial%2Fautoml%2Fsdk_automl_tabular_regression_online_bq.ipynb)\n|\n|\n| \\|\n|\n| [Open\n| in Vertex AI Workbench](https://console.cloud.google.com/vertex-ai/workbench/deploy-notebook?download_url=https%3A%2F%2Fraw.githubusercontent.com%2FGoogleCloudPlatform%2Fvertex-ai-samples%2Fmain%2Fnotebooks%2Fofficial%2Fautoml%2Fsdk_automl_tabular_regression_online_bq.ipynb)\n|\n|\n| \\|\n|\n| [View on GitHub](https://github.com/GoogleCloudPlatform/vertex-ai-samples/blob/main/notebooks/official/automl/sdk_automl_tabular_regression_online_bq.ipynb)"]]