Restez organisé à l'aide des collections
Enregistrez et classez les contenus selon vos préférences.
Cette page explique l'intégration de PyTorch à Vertex AI et fournit des ressources expliquant comment utiliser PyTorch sur Vertex AI. L'intégration de PyTorch dans Vertex AI vous permet d'entraîner, de déployer et d'orchestrer plus facilement des modèles PyTorch en production.
Exécuter du code dans des notebooks
Vertex AI propose deux options pour exécuter votre code dans les notebooks : Colab Enterprise et Vertex AI Workbench.
Pour en savoir plus sur ces options, consultez la section Choisir une solution de notebook.
Conteneurs prédéfinis pour l'entraînement
Vertex AI fournit des images de conteneurs Docker prédéfinies pour l'entraînement de modèle.
Ces conteneurs sont organisés par frameworks de machine learning et versions de framework. Ils incluent des dépendances communes que vous souhaiterez peut-être utiliser dans votre code d'entraînement. Pour savoir quelles sont les versions de PyTorch comportant des conteneurs d'entraînement prédéfinis et comment entraîner des modèles avec un conteneur d'entraînement prédéfini, consultez la page Conteneurs préconfigurés pour l'entraînement personnalisé.
Conteneurs préconfigurés pour la diffusion des prédictions
Vertex AI fournit des images de conteneur Docker prédéfinies pour diffuser les prédictions par lot et en ligne.
Ces conteneurs sont organisés par frameworks de machine learning et versions de framework. Ils incluent des dépendances communes que vous souhaiterez peut-être utiliser dans votre code de prédiction. Pour savoir quelles versions de PyTorch contiennent des conteneurs de prédiction prédéfinis et comment diffuser des modèles avec un conteneur de prédiction prédéfini, consultez la page Conteneurs de prédiction prédéfinis pour l'entraînement personnalisé.
Entraînement distribué
Vous pouvez exécuter un entraînement distribué de modèles PyTorch sur Vertex AI. Pour un entraînement sur plusieurs nœuds de calcul, vous pouvez utiliser Reduction Server afin d'optimiser davantage les performances pour les opérations collectives de réduction globale (all-reduce). Pour en savoir plus sur l'entraînement distribué sur Vertex AI, consultez la page Entraînement distribué.
Ressources pour l'utilisation de PyTorch sur Vertex AI
Pour en savoir plus et commencer à utiliser PyTorch dans Vertex AI, consultez les ressources suivantes :
Tutoriel : Utiliser Vertex AI pour entraîner un modèle de classification d'images PyTorch dans l'un des environnements de conteneurs prédéfinis de Vertex AI à l'aide de la console Google Cloud.
Pour obtenir des instructions détaillées sur cette tâche directement dans la console Google Cloud, cliquez sur Visite guidée :
Sauf indication contraire, le contenu de cette page est régi par une licence Creative Commons Attribution 4.0, et les échantillons de code sont régis par une licence Apache 2.0. Pour en savoir plus, consultez les Règles du site Google Developers. Java est une marque déposée d'Oracle et/ou de ses sociétés affiliées.
Dernière mise à jour le 2025/09/04 (UTC).
[[["Facile à comprendre","easyToUnderstand","thumb-up"],["J'ai pu résoudre mon problème","solvedMyProblem","thumb-up"],["Autre","otherUp","thumb-up"]],[["Difficile à comprendre","hardToUnderstand","thumb-down"],["Informations ou exemple de code incorrects","incorrectInformationOrSampleCode","thumb-down"],["Il n'y a pas l'information/les exemples dont j'ai besoin","missingTheInformationSamplesINeed","thumb-down"],["Problème de traduction","translationIssue","thumb-down"],["Autre","otherDown","thumb-down"]],["Dernière mise à jour le 2025/09/04 (UTC)."],[],[],null,["# PyTorch integration\n\n| To see an example of PyTorch integration,\n| run the \"Training, tuning and deploying a PyTorch text sentiment classification model\" notebook in one of the following\n| environments:\n|\n| [Open in Colab](https://colab.research.google.com/github/GoogleCloudPlatform/vertex-ai-samples/blob/main/notebooks/official/training/pytorch-text-sentiment-classification-custom-train-deploy.ipynb)\n|\n|\n| \\|\n|\n| [Open in Colab Enterprise](https://console.cloud.google.com/vertex-ai/colab/import/https%3A%2F%2Fraw.githubusercontent.com%2FGoogleCloudPlatform%2Fvertex-ai-samples%2Fmain%2Fnotebooks%2Fofficial%2Ftraining%2Fpytorch-text-sentiment-classification-custom-train-deploy.ipynb)\n|\n|\n| \\|\n|\n| [Open\n| in Vertex AI Workbench](https://console.cloud.google.com/vertex-ai/workbench/deploy-notebook?download_url=https%3A%2F%2Fraw.githubusercontent.com%2FGoogleCloudPlatform%2Fvertex-ai-samples%2Fmain%2Fnotebooks%2Fofficial%2Ftraining%2Fpytorch-text-sentiment-classification-custom-train-deploy.ipynb)\n|\n|\n| \\|\n|\n[View on GitHub](https://github.com/GoogleCloudPlatform/vertex-ai-samples/blob/main/notebooks/official/training/pytorch-text-sentiment-classification-custom-train-deploy.ipynb) \n\nThis page explains Vertex AI's PyTorch integration and provides resources\nthat show you how to use PyTorch on Vertex AI. Vertex AI's PyTorch\nintegration makes it easier for you to train, deploy, and orchestrate PyTorch\nmodels in production.\n\nRun code in notebooks\n---------------------\n\nVertex AI provides two options for running your code in\nnotebooks, Colab Enterprise and Vertex AI Workbench.\nTo learn more about these options, see\n[choose a notebook solution](/vertex-ai/docs/workbench/notebook-solution).\n\nPrebuilt containers for training\n--------------------------------\n\nVertex AI provides prebuilt Docker container images for model training.\nThese containers are organized by machine learning frameworks and framework\nversions and include common dependencies that you might want to use in your\ntraining code. To learn about which PyTorch versions have prebuilt training\ncontainers and how to train models with a prebuilt training container, see\n[Prebuilt containers for custom training](/vertex-ai/docs/training/pre-built-containers#pytorch).\n\nPrebuilt containers for serving inferences\n------------------------------------------\n\nVertex AI provides prebuilt Docker container images for serving both\nbatch and online inferences.\nThese containers are organized by machine learning frameworks and framework\nversions and include common dependencies that you might want to use in your\ninference code. To learn about which PyTorch versions have prebuilt inference\ncontainers and how to serve models with a prebuilt inference container, see\n[Prebuilt containers for custom training](/vertex-ai/docs/predictions/pre-built-containers).\n\nDistributed training\n--------------------\n\nYou can run distributed training of PyTorch models on Vertex AI. For\nmulti-worker training, you can use Reduction Server to optimize performance\neven further for all-reduce collective operations. To learn more about\ndistributed training on Vertex AI, see\n[Distributed training](/vertex-ai/docs/training/distributed-training).\n\nResources for using PyTorch on Vertex AI\n----------------------------------------\n\nTo learn more and start using PyTorch in Vertex AI, see the following\nresources:\n\n- [How to train and tune PyTorch models on Vertex AI](https://cloud.google.com/blog/topics/developers-practitioners/pytorch-google-cloud-how-train-and-tune-pytorch-models-vertex-ai): Learn how to use [Vertex AI Training](/vertex-ai/docs/training/overview) to build and train a sentiment text classification model using PyTorch and [Vertex AI Hyperparameter Tuning](/vertex-ai/docs/training/using-hyperparameter-tuning) to tune hyperparameters of PyTorch models.\n- [How to deploy PyTorch models on Vertex AI](https://cloud.google.com/blog/topics/developers-practitioners/pytorch-google-cloud-how-deploy-pytorch-models-vertex-ai): Walk through the deployment of a Pytorch model using [TorchServe](https://pytorch.org/serve/) as a custom container, by deploying the model artifacts to a [Vertex AI Inference](/vertex-ai/docs/predictions/overview) service.\n- [Orchestrating PyTorch ML Workflows on Vertex AI Pipelines](https://cloud.google.com/blog/topics/developers-practitioners/orchestrating-pytorch-ml-workflows-vertex-ai-pipelines): See how to build and orchestrate ML pipelines for training and deploying PyTorch models on Google Cloud Vertex AI using [Vertex AI Pipelines](/vertex-ai/docs/pipelines/introduction).\n- [Scalable ML Workflows using PyTorch on Kubeflow Pipelines and Vertex Pipelines](https://cloud.google.com/blog/topics/developers-practitioners/scalable-ml-workflows-using-pytorch-kubeflow-pipelines-and-vertex-pipelines): Take a look at examples of [PyTorch](https://pytorch.org/)-based ML workflows on OSS [Kubeflow Pipelines](https://www.kubeflow.org/docs/components/pipelines/), (part of the Kubeflow project) and [Vertex AI Pipelines](/vertex-ai/docs/pipelines). We share [new PyTorch built-in components](https://github.com/kubeflow/pipelines/tree/master/components/PyTorch/pytorch-kfp-components) added to the Kubeflow Pipelines.\n- [Serving PyTorch image models with prebuilt containers on\n Vertex AI](https://github.com/GoogleCloudPlatform/vertex-ai-samples/blob/main/notebooks/official/prediction/pytorch_image_classification_with_prebuilt_serving_containers.ipynb): This notebook deploys a PyTorch image classification model on Vertex AI using prebuilt PyTorch serving images.\n\nWhat's next\n-----------\n\n- Tutorial: Use Vertex AI to train a PyTorch image classification model in one of Vertex AI's prebuilt container environments by using the Google Cloud console.\n\n *** ** * ** ***\n\n To follow step-by-step guidance for this task directly in the\n Google Cloud console, click **Guide me**:\n\n [Guide me](https://console.cloud.google.com/freetrial?redirectPath=/?walkthrough_id=vertex-pytorch-custom-training)\n\n *** ** * ** ***"]]