이 페이지에서는 Vertex AI의 PyTorch 통합을 설명하고 Vertex AI에서 PyTorch를 사용하는 방법을 보여주는 리소스를 제공합니다. Vertex AI의 PyTorch 통합을 사용하면 프로덕션에서 PyTorch 모델을 더 쉽게 학습, 배포, 조정할 수 있습니다.
노트북에서 코드 실행
Vertex AI는 노트북에서 코드를 실행할 수 있는 두 가지 옵션인 Colab Enterprise 및 Vertex AI Workbench를 제공합니다.
이러한 옵션에 대한 자세한 내용은 노트북 솔루션 선택을 참조하세요.
학습용으로 사전 빌드된 컨테이너
Vertex AI는 모델 학습용으로 사전 빌드된 Docker 컨테이너 이미지를 제공합니다.
이러한 컨테이너는 머신러닝 프레임워크 및 프레임워크 버전으로 구성되며 학습 코드에 사용하려는 공통 종속 항목을 포함합니다. 사전 빌드된 학습 컨테이너가 있는 PyTorch 버전 및 사전 빌드된 학습 컨테이너로 모델을 학습시키는 방법을 알아보려면 커스텀 학습용으로 사전 빌드된 컨테이너를 참조하세요.
추론 제공용으로 사전 빌드된 컨테이너
Vertex AI는 일괄 추론 및 온라인 추론을 제공하기 위해 사전 빌드된 Docker 컨테이너 이미지를 제공합니다.
이러한 컨테이너는 머신러닝 프레임워크 및 프레임워크 버전으로 구성되며 추론 코드에 사용하려는 공통 종속 항목을 포함합니다. 사전 빌드된 추론 컨테이너가 있는 PyTorch 버전과 사전 빌드된 추론 컨테이너로 모델을 제공하는 방법을 알아보려면 커스텀 학습용으로 사전 빌드된 컨테이너를 참조하세요.
분산형 학습
Vertex AI에서 PyTorch 모델의 분산형 학습을 실행할 수 있습니다. 다중 작업자 학습의 경우 Reduction Server를 사용하여 올리듀스 집합 작업의 성능을 더욱 최적화할 수 있습니다. Vertex AI의 분산형 학습에 대한 자세한 내용은 분산형 학습을 참조하세요.
Vertex AI에서 PyTorch를 사용하기 위한 리소스
자세한 내용과 함께 Vertex AI에서 PyTorch를 사용하는 방법을 알아보려면 다음 리소스를 참조하세요.
[[["이해하기 쉬움","easyToUnderstand","thumb-up"],["문제가 해결됨","solvedMyProblem","thumb-up"],["기타","otherUp","thumb-up"]],[["이해하기 어려움","hardToUnderstand","thumb-down"],["잘못된 정보 또는 샘플 코드","incorrectInformationOrSampleCode","thumb-down"],["필요한 정보/샘플이 없음","missingTheInformationSamplesINeed","thumb-down"],["번역 문제","translationIssue","thumb-down"],["기타","otherDown","thumb-down"]],["최종 업데이트: 2025-07-09(UTC)"],[],[],null,["# PyTorch integration\n\n| To see an example of PyTorch integration,\n| run the \"Training, tuning and deploying a PyTorch text sentiment classification model\" notebook in one of the following\n| environments:\n|\n| [Open in Colab](https://colab.research.google.com/github/GoogleCloudPlatform/vertex-ai-samples/blob/main/notebooks/official/training/pytorch-text-sentiment-classification-custom-train-deploy.ipynb)\n|\n|\n| \\|\n|\n| [Open in Colab Enterprise](https://console.cloud.google.com/vertex-ai/colab/import/https%3A%2F%2Fraw.githubusercontent.com%2FGoogleCloudPlatform%2Fvertex-ai-samples%2Fmain%2Fnotebooks%2Fofficial%2Ftraining%2Fpytorch-text-sentiment-classification-custom-train-deploy.ipynb)\n|\n|\n| \\|\n|\n| [Open\n| in Vertex AI Workbench](https://console.cloud.google.com/vertex-ai/workbench/deploy-notebook?download_url=https%3A%2F%2Fraw.githubusercontent.com%2FGoogleCloudPlatform%2Fvertex-ai-samples%2Fmain%2Fnotebooks%2Fofficial%2Ftraining%2Fpytorch-text-sentiment-classification-custom-train-deploy.ipynb)\n|\n|\n| \\|\n|\n[View on GitHub](https://github.com/GoogleCloudPlatform/vertex-ai-samples/blob/main/notebooks/official/training/pytorch-text-sentiment-classification-custom-train-deploy.ipynb) \n\nThis page explains Vertex AI's PyTorch integration and provides resources\nthat show you how to use PyTorch on Vertex AI. Vertex AI's PyTorch\nintegration makes it easier for you to train, deploy, and orchestrate PyTorch\nmodels in production.\n\nRun code in notebooks\n---------------------\n\nVertex AI provides two options for running your code in\nnotebooks, Colab Enterprise and Vertex AI Workbench.\nTo learn more about these options, see\n[choose a notebook solution](/vertex-ai/docs/workbench/notebook-solution).\n\nPrebuilt containers for training\n--------------------------------\n\nVertex AI provides prebuilt Docker container images for model training.\nThese containers are organized by machine learning frameworks and framework\nversions and include common dependencies that you might want to use in your\ntraining code. To learn about which PyTorch versions have prebuilt training\ncontainers and how to train models with a prebuilt training container, see\n[Prebuilt containers for custom training](/vertex-ai/docs/training/pre-built-containers#pytorch).\n\nPrebuilt containers for serving inferences\n------------------------------------------\n\nVertex AI provides prebuilt Docker container images for serving both\nbatch and online inferences.\nThese containers are organized by machine learning frameworks and framework\nversions and include common dependencies that you might want to use in your\ninference code. To learn about which PyTorch versions have prebuilt inference\ncontainers and how to serve models with a prebuilt inference container, see\n[Prebuilt containers for custom training](/vertex-ai/docs/predictions/pre-built-containers).\n\nDistributed training\n--------------------\n\nYou can run distributed training of PyTorch models on Vertex AI. For\nmulti-worker training, you can use Reduction Server to optimize performance\neven further for all-reduce collective operations. To learn more about\ndistributed training on Vertex AI, see\n[Distributed training](/vertex-ai/docs/training/distributed-training).\n\nResources for using PyTorch on Vertex AI\n----------------------------------------\n\nTo learn more and start using PyTorch in Vertex AI, see the following\nresources:\n\n- [How to train and tune PyTorch models on Vertex AI](https://cloud.google.com/blog/topics/developers-practitioners/pytorch-google-cloud-how-train-and-tune-pytorch-models-vertex-ai): Learn how to use [Vertex AI Training](/vertex-ai/docs/training/overview) to build and train a sentiment text classification model using PyTorch and [Vertex AI Hyperparameter Tuning](/vertex-ai/docs/training/using-hyperparameter-tuning) to tune hyperparameters of PyTorch models.\n- [How to deploy PyTorch models on Vertex AI](https://cloud.google.com/blog/topics/developers-practitioners/pytorch-google-cloud-how-deploy-pytorch-models-vertex-ai): Walk through the deployment of a Pytorch model using [TorchServe](https://pytorch.org/serve/) as a custom container, by deploying the model artifacts to a [Vertex AI Inference](/vertex-ai/docs/predictions/overview) service.\n- [Orchestrating PyTorch ML Workflows on Vertex AI Pipelines](https://cloud.google.com/blog/topics/developers-practitioners/orchestrating-pytorch-ml-workflows-vertex-ai-pipelines): See how to build and orchestrate ML pipelines for training and deploying PyTorch models on Google Cloud Vertex AI using [Vertex AI Pipelines](/vertex-ai/docs/pipelines/introduction).\n- [Scalable ML Workflows using PyTorch on Kubeflow Pipelines and Vertex Pipelines](https://cloud.google.com/blog/topics/developers-practitioners/scalable-ml-workflows-using-pytorch-kubeflow-pipelines-and-vertex-pipelines): Take a look at examples of [PyTorch](https://pytorch.org/)-based ML workflows on OSS [Kubeflow Pipelines](https://www.kubeflow.org/docs/components/pipelines/), (part of the Kubeflow project) and [Vertex AI Pipelines](/vertex-ai/docs/pipelines). We share [new PyTorch built-in components](https://github.com/kubeflow/pipelines/tree/master/components/PyTorch/pytorch-kfp-components) added to the Kubeflow Pipelines.\n- [Serving PyTorch image models with prebuilt containers on\n Vertex AI](https://github.com/GoogleCloudPlatform/vertex-ai-samples/blob/main/notebooks/official/prediction/pytorch_image_classification_with_prebuilt_serving_containers.ipynb): This notebook deploys a PyTorch image classification model on Vertex AI using prebuilt PyTorch serving images.\n\nWhat's next\n-----------\n\n- Tutorial: Use Vertex AI to train a PyTorch image classification model in one of Vertex AI's prebuilt container environments by using the Google Cloud console.\n\n *** ** * ** ***\n\n To follow step-by-step guidance for this task directly in the\n Google Cloud console, click **Guide me**:\n\n [Guide me](https://console.cloud.google.com/freetrial?redirectPath=/?walkthrough_id=vertex-pytorch-custom-training)\n\n *** ** * ** ***"]]