Das Vertex AI SDK enthält auch Klassen zur Erstellung von generativen KI-Lösungen mit Basismodellen für Text, Code, Chat und Texteinbettung. Mit diesen Klassen können Sie Text generieren, einen Text- oder Code-Chatbot erstellen, ein Basismodell optimieren und eine Texteinbettung erstellen. Eine Texteinbettung ist Text in Form eines Vektors, der zur Suche nach Elementen verwendet wird. Weitere Informationen finden Sie unter Einführung in Sprachmodelle in Vertex AI SDK.
Sie können das Vertex AI SDK für Python in einem gehosteten JupyterLab-Notebook in Vertex AI verwenden, um Code zu schreiben und auszuführen. Die Notebooks enthalten vorinstallierte ML-Frameworks wie TensorFlow und PyTorch. Sie können auch andere Notebooks wie Colab-Notebooks oder eine Entwicklerumgebung Ihrer Wahl verwenden, die Python unterstützt.
Wenn Sie das Vertex AI SDK für Python jetzt verwenden möchten, finden Sie weitere Informationen in den folgenden Ressourcen:
- Einführung in das Vertex AI SDK für Python
- Referenz zum Vertex AI SDK
- Referenz zum Vertex AI SDK-Sprachmodell
- Modell mit Vertex AI und Python SDK trainieren
Das Vertex AI SDK enthält viele Klassen, mit denen Sie die Datenaufnahme automatisieren, Modelle trainieren und Vorhersagen abrufen können. Er enthält auch Klassen, mit denen Sie Ihren ML-Workflow überwachen, evaluieren und optimieren können. Die Klassen können lose in die folgenden Kategorien unterteilt werden:
- Datenklassen umfassen Klassen, die mit strukturierten Daten, unstrukturierten Daten und dem Vertex AI Feature Store arbeiten.
- Trainingsklassen umfassen Klassen, die mit AutoML-Training für strukturierte und unstrukturierte Daten, benutzerdefiniertes Training, Hyperparameter-Training und Pipelinetraining arbeiten.
- Modellklassen funktionieren mit Modellen und Modellbewertungen.
- Vorhersageklassen funktionieren mit Batchvorhersagen, Onlinevorhersagen und Vorhersagen der Vektorsuche.
- Tracking-Klassen funktionieren mit Vertex ML Metadata, Vertex AI Experiments und Vertex AI TensorBoard.